Skip to main content
Log in

Sensitivity of Plant Plasma Membrane to Simulated Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Biological membranes, especially the plasma membrane, are considered to be the most sensitive to altered gravity in regard to their properties and functions. We studied the composition and content of lipids, fatty acids and sterols in the plasma membrane fractions isolated from epicotyls and roots of Pisum sativum seedlings grown during 7 days under simulated microgravity by slow clinorotation. We demonstrate differences in the content of these membrane components of clinorotated and 1 g controls. The results indicate the high sensitivity of root plasma membrane to altered gravity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Borner, G.H.H., Sherrier, В.О., Weimar, T., Michaelson, L., Hawkins, N., MacAskill, A., Napier, J., Beale, M., Lilley, K., Dupree, P.: Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 137, 104–116 (2005)

    Article  Google Scholar 

  • Carde, J.P.: Electron microscopy of plant cell membranes. In: Packer, L., Douce, R. (eds.) Methods Enzymol, vol. 148, pp. 599–622. Acad. Press Inc., USA (1987)

    Google Scholar 

  • Driss-Ecole, D., Jeune, B., Prouteau, M., Julianus, P., Perbal, G.: Lentil root statoliths reach a stable state in microgravity. Planta. 211, 396–405 (2000)

    Article  Google Scholar 

  • Dufoure, E.J.: Sterols and membrane dynamics. J. Chem. Вiol. 1(1), 63–77 (2008)

    Google Scholar 

  • Goldermann, M., Hanke, W.: Ion channel are sensitive to gravity changes. Microgravity Sci. Technol. 13, 35–38 (2001)

    Article  Google Scholar 

  • Gronewald, J.W., Abou-Khalil, W., Weber, E.J., Hanson, J.B.: Lipid composition of a plasma membrane enriched fraction of maize roots. Phytochemistry. 21, 859–862 (1982)

    Article  Google Scholar 

  • Hanke, W.: Planar lipids bilayers as model systems to study the interaction of gravity with biological membranes, p. 283. Proceeding 30th COSPAR Scientific Assembly, Hamburg, Germany (1994)

    Google Scholar 

  • Hernandez, L.E., Cooke, D.T.: Modifcation of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J. Exp. Bot. 48(7), 1375–1381 (1997)

    Article  Google Scholar 

  • Hernandez, L.E., Clarkson, D.T., Cooke, D.T.: In vivo activation of plasma membrane H+-ATPase hydrolytic activity by complex lipid-bound unsaturated fatty acids in Ustilago maydis. Eur. J. Biochem. 269(3), 1006–1011 (2002)

    Article  Google Scholar 

  • Kerkeb, L., Donaire, J.P., Venema, K., Rodriguez-Kerkeb, L., Donaire, J.P., Venema, K., Rodriguez-Rosales, M.P.: Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli. Physiol. Plant. 113(2), 217–224 (2001)

    Article  Google Scholar 

  • Klymchuk, D., Kurylenko, I., Vorobyova, T., Dubovoy, V., Chyzhykova, O., Baranenko, V.: Characterization of H+-ATPase activity in plasma membrane from pea seedlings under altered gravity. J. Gravity Physiol. 11(2), 205–206 (2004)

    Google Scholar 

  • Kohn, F., Hauslage, J., Hanke, W.: Membrane fluidity changes, A basic mechanism of interaction of gravity with cells? Microgravity Sci. Technol. 29(5), 337–342 (2017)

    Article  Google Scholar 

  • Кordyum, E.L.: Biology of plant cells in microgravity and under clinostating. Int. Rev. Cytol. 171, 1–78 (1997)

  • Kordyum, E.L.: Plant cell gravisensitivity and adaptation to microgravity. J. Plant. Biol. 16(1), 79–90 (2014)

    Article  Google Scholar 

  • Kraft, M.L.: Plasma membrane organization and function: moving past lipid rafts. Mol. Biol. Cell. 24, 2765–2768 (2013)

    Article  Google Scholar 

  • Larsen, P.: Orhogeotropism in roots. In: Rd. Rd. Ruhland W. (Ed.) Encyclopedia of Plant Physiology. Springer, Berlin. Vol. 17 (1962)

  • Larsson, C., Sommarin, M., Widell, S.: Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol. 228, 451–469 (1994)

  • Lingwood, D., Simons, K.: Lipid rafts as a membrane-organizing principle. Science. 327(5961), 46-59 (2010)

  • Los, D.A., Murata, N.: Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta. 1394, 3–15 (1998)

    Article  Google Scholar 

  • Lundbog, T., Sandelius, A.S., Widell, S., Larsson, C., Liljeberg, C., Kylin, A.: Characterization of root plasma membranes prepared by partition in an aqueous polymer two-phase system. In: Wintermans, J.F.G.M., Kuiper, P.J.C. (eds.) Biochemistry and Metabolism of Plant Lipids, pp. 133–136. Elsevier, Amsterdam (1982)

    Google Scholar 

  • Lyons, J.M., Wheaton, T.A., Pratt, H.K.: Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants. Plant Physiol. 39(2), 262–268 (1964)

    Article  Google Scholar 

  • Mazars, C., Brière, C., Grat, S., Rossignol, M., Pereda-Loth, V., Boucheron-Dubuisson, E.B., Le Disque, I., Medina, F.J., Graziana, A.: Microgravity induces changes in microsomeassociated proteins of Arabidopsis seedlings grown on board the International Space Station. PLOS. 9, 1–18 (2014)

    Google Scholar 

  • Mongrand, S., Morel, J., Laroche, J., Claverol, S., Carde, J.P., Hartmann, M.A., Bonneu, M., Simon-Plas, F., Lessire, R., Bessoule, J.J.: Lipid rafts in higher plant cells: purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J. Biol. Chem. 279, 36277–36286 (2004)

    Article  Google Scholar 

  • Navari-Izzo, F., Quartacci, M.F., Izzo, R.: Lipid changes in maize seedlings in response to field water deficits. J. Exp. Bot. 40(6), 675–680 (1989)

    Article  Google Scholar 

  • Nedukha, O.M., Grachov, V., Vorobjova, T.: Effects of horizontal clinorotation on lipid content in pea plasmalemma, p. 56. Proc. 14th Ukrainian conference of cosmic investigations, Uzgorod, Ukraine (2014a)

    Google Scholar 

  • Nedukha, O.M., Kordyum, E.L., Grakhov, V.P., Vorobjova, T.V.: Fatty acids and lipids content in Pisum sativum seedlings plasmalemma under clinorotation, p. 176. Proc. Plant Biology and Biotechnology International Conf, Almaty, Kazakhstan (2014b)

    Google Scholar 

  • Orlova, V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., Los, D.A.: Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol. 44, 447–450 (2003)

    Article  Google Scholar 

  • Perbal, G.: From ROOTS to GRAVI-1: twenty five years for understanding how plant sense gravity. Microgravity Sci. Technol. 21(1–2), 3–10 (2009)

    Article  Google Scholar 

  • Perbal, G., Dris-Ecole, D.: Sensitivity to gravistimulus of lentil sedlings root grown in space during the IML.1. Mission of Spacelab. Physiol. Plant. 90, 315–318 (1994)

    Article  Google Scholar 

  • Perbal, G., Dris-Ecole, D.: Mechanotransduction in gravisensing cells. Trends Plant Sci. 8, 498–504 (2003)

    Article  Google Scholar 

  • Pickard, B.G., Ping Ding, J.: Gravity sensing in higher plants. Adv. Comp. Environ. Physiol. 10, 81–109 (1992)

    Article  Google Scholar 

  • Polulyach, Yu.A.: Content of phospholipids and fatty acids in plasma membrane of pea rootsunder clinorotation. Reports of Acad Sci of USSR, Ser. Biol. № 10, 67–69 (1988)

  • Sack, F.D.: Plant gravity sensing. Int. Rev. Cytol. 127, 193–252 (1991)

    Article  Google Scholar 

  • Schaller, H.: The role of sterols in plant growth and development. Prog. Lipid Res. 42(3), 163–175 (2003)

    Article  Google Scholar 

  • Schatz, A., Reitstetter, R., Linke-Hommes, A., Briegleb, W., Slenzka, K., Rahmann, H.: Gravity effects on membrane processes. Adv. Space Res. 14(8), 835–843 (1994)

    Article  Google Scholar 

  • Sheikh, S.A., Shahnawaz, M., Baloch Shahla, K.: Effect of heat stress on fatty acid composition in cotto seedlings roots. Sarhad J. Agric. 26(1), 19–24 (2010)

    Google Scholar 

  • Shen-Miller, J., Hinchman, R., Gordon, S.A.: Thresholds for georesponse to acceleration in gravity- compensated avena seedlings. Plant Physiol. 43(4), 634–639 (1968)

    Article  Google Scholar 

  • Thévenet, D., D'Ari, R., Bouloc, P.: The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. Aust. J. Biotechnol. 47, 89–97 (1996)

    Article  Google Scholar 

  • Uemura, M., Steponkus, P.: A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol. 104(2), 479–496 (1994)

    Article  Google Scholar 

  • van Loon, J.J.W.A.: Mechanomics and physicomics in gravisensing. Microgravity Sci. Technol. 21(1–2), 159–167 (2009)

    Article  Google Scholar 

  • van Meer, G., Voelker, D.R., Feigenson, G.W.: Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9(2), 112–124 (2008)

    Article  Google Scholar 

  • Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., Tyerman, S.D.: The role of plasma membrane intrinsic protein Aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between Isohydric and Anisohydric cultivars of grapevine. Plant Physiol. 149(1), 445–460 (2009)

    Article  Google Scholar 

  • Volkmann, D., Sievers, A.: Graviperception in multicellular organs. In: Haupt, W., Feinleib, M.E. (eds.) Encyclopedia of Plant Physiol, vol. 7, pp. 573–600. Springer, Berlin (1979)

    Google Scholar 

  • Whitman, C.E., Travis, R.I.: Phospholipid composition of a plasma membrane-enriched fraction from developing soybean roots. Plant Physiol. 79, 494–498 (1985)

    Article  Google Scholar 

  • Yoshida, S., Uemura, M.: Protein and lipid compositions of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol. 75, 31–37 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. Nedukha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedukha, О., Kordyum, E. & Vorobyova, T. Sensitivity of Plant Plasma Membrane to Simulated Microgravity. Microgravity Sci. Technol. 33, 10 (2021). https://doi.org/10.1007/s12217-020-09865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-020-09865-1

Keywords

Navigation