Skip to main content
Log in

Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The surface tension and viscosity of equilibrium and supercooled liquids of Cu50Zr50 were measured in the containerless electromagnetic levitator ISS-EML in the European space laboratory Columbus on board the International Space Station (ISS) under microgravity using high-speed camera recordings. From 1250 K to 1475 K, the surface tension follows the relation σ(T) = (1.58 ± 0.01) N/m – (3.1 ± 0.6) · 10−4 N/m · K · (T – 1209 K). A frequency shift correction was applied to remove the influence of sample rotation on the measured surface tension. Within the investigated temperature range, the viscosity can be expressed by an Arrhenius temperature dependence η(T) = η0 · exp(EA/kBT), with η0 = (0.08 ± 0.02) mPa·s and EA = (0.58 ± 0.03) eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amore, S., Brillo, J., Egry, I., Novakovic, R.: Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling. Appl. Surf. Sci. 257, 7739–7745 (2011)

    Article  Google Scholar 

  • Annamalai, P., Trinh, E., Wang, T.G.: Experimental study of the oscillations of a rotating drop. J. Fluid Mech. 158, 317–327 (1985)

    Article  Google Scholar 

  • Baes, C.F., Kellog, H.H.: Effect of dissolved Sulphur on the surface tension of liquid copper. JOM 5, 643–648 (1953)

    Article  Google Scholar 

  • Basaran, O.A.: Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169–198 (1992)

    Article  Google Scholar 

  • Brillo, J., Lauletta, G., Vaianella, L., Arato, E., Giuranno, D., Novakovic, R., Ricci, E.: Surface tension of liquid Ag-Cu binary alloys. ISIJ Int. 54, 2115–2119 (2014)

    Article  Google Scholar 

  • Busse, F.H.: Oscillations of a rotating liquid drop. J. Fluid Mech. 142, 1–8 (1984)

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar, S.: The oscillations of a viscous liquid globe. Proc. Math. Soc. 9, 141–149 (1959)

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar, S.: The stability of a rotating liquid drop. Proc. Royal Soc. Lond., Series A. 286, 1–26 (1965)

    Article  MathSciNet  Google Scholar 

  • Cummings, D., Blackburn, D.: Oscillations of magnetically levitated. Aspherical Droplets, J. Fluid Mech. 224, 395–416 (1991)

    Article  Google Scholar 

  • Eckler, K., Egry, I., Herlach, D.M.: Measurement of surface tension on levitated oscillating metallic drops. Mater. Sci. Eng. A. 133, 718–721 (1991)

    Article  Google Scholar 

  • Egry, I.: Surface tension measurements of liquid metals by the oscillating drop technique. J. Mater. Sci. 26, 2997–3003 (1991)

    Article  Google Scholar 

  • Fecht, H.-J., Wunderlich, R.K.: Fundamentals of liquid processing in low earth orbit: from Thermophysical properties to microstructure formation in metallic alloys. JOM 69, 1261–1268 (2017)

    Article  Google Scholar 

  • Fecht, H.-J., Wunderlich, R., Battezzati, L., Etay, J., Ricci, E., Seetharaman, S., Egry, I.: Thermophysical properties of materials. Europhysics News. 39, 19–21 (2008)

    Article  Google Scholar 

  • Frohberg, M. G., Roesner-Kuhn, M., and Kuppermann, G.: International Workshop on Nucleation and Thermophysical Properties of Undercooled Melts, March 4–6, Physikzentrum Bad Honnef (1998)

  • Galenko, P.K., Hanke, R., Paul, P., Koch, S., Rettenmayer, M., Gegner, J., Herlach, D.M., Dreier, W., Kharanzhevski, E.V.: Solidification kinetics of a cu-Zr alloy: ground-based and microgravity experiments, IOP Conf. Ser.: Mater. Sci. Eng. 192, 012028 (2017)

    Google Scholar 

  • Gallois, B., Lupis, C.H.P.: Effect of oxygen on the surface tension of liquid copper. Metall. Trans. B. 12B, 549 (1981)

    Article  Google Scholar 

  • Hao, S.G., Wang, C.Z., Kramer, M.J., Ho, K.M.: Microscopic origin of slow dynamics at the good glass forming composition range in Zr1-xCux metallic liquids. J. Appl. Phys. 107, 053511 (2010)

    Article  Google Scholar 

  • Herlach, D. M.: Solidification and crystallization, John Wiley & Sons ISBN: 3527604359, page 107 (2006)

  • Holland-Moritz, D., Yang, F., Kordel, T., Klein, S., Kargl, F., Gegner, J., Hansen, T., Bernarcik, J., Kaban, I., Shuleshova, O., Mattern, N., Meyer, A.: Does an icosahedral short-range order prevail in glass-forming Zr-Cu melts? Europhys. Lett. 100, 56002 (2012)

    Article  Google Scholar 

  • Ishikawa, T., Paradis, P.-F., Itami, T., Yoda, S.: Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator. Meas. Sci. Technol. 16, 443 (2005)

    Article  Google Scholar 

  • Jiang, H., Zhao, J.: Continuous solidification of immiscible alloys and microstructure control. Microgravity Sci. Technol. 30, 747–760 (2018)

    Article  Google Scholar 

  • Keene, B.J.: Review of data for the surface tension of pure metals. Int. Mater. Rev. 38, 157–192 (1993)

    Article  Google Scholar 

  • Krasovskyy, V.P., Naidich, Y.V., Krasovskaya, N.A.: Surface tension and density of copper-zirconium alloys in contact with fluoride refractories. J. Mater. Sci. 40, 2367–2369 (2005)

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics, Cambridge University Press, Cambridge ISBN: 0 521 05515 6, p. 450 (1975)

  • Lee, C.P.: Viscous damping of the oscillations of a rotating simple drop. Phys. Fluids. 28, 3187–3188 (1986)

    Article  Google Scholar 

  • Liu, J.-L., Jin, T., Luo, X.-H., Feng, S.-B., Zhao, J.-Z.: Effects of solidification conditions on the crystal selection behavior of an Al Base alloy during directional solidification. Microgravity Sci. Technol. 28, 109–113 (2016)

    Article  Google Scholar 

  • Mashayek, F., Ashgriz, N.: Nonlinear oscillations of drops with internal circulation. Phys. Fluids. 10, 1071–1082 (1998)

    Article  Google Scholar 

  • Mauro, N.A., Kelton, K.F.: A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011)

    Article  Google Scholar 

  • Mauro, N.A., Blodgett, M., Johnson, M.L., Vogt, A.J., Kelton, K.F.: A structural signature of liquid fragility. Nat. Commun. 5, 4616 (2014)

    Article  Google Scholar 

  • Meyer, H., van der Veen, M.: The shape of a rotating fluid drop. Opleiding wiskunde voor de industrie Eindhoven: student report, p. 8901. Technische Universiteit Eindhoven, Eindhoven (1989)

    Google Scholar 

  • Mirsandi, H., Yamamoto, T., Takagi, Y., Okano, Y., Inatomi, Y., Hayakawa, Y., Dost, S.: A numerical study on the growth process of InGaSb crystals under microgravity with interfacial kinetics. Microgravity Science and Technology. 27, 313–320 (2015)

    Article  Google Scholar 

  • Novakovic, R., Muolo, M.L., Passerone, A.: Bulk and surface properties of liquid X-Zr (X= Ag, Cu) compound forming alloys. Surf. Sci. 549, 281–293 (2004)

    Article  Google Scholar 

  • Paradis, P.-F., Ishikawa, T., Yoda, S.: Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int. J. Thermophys. 23, 825–842 (2002)

    Article  Google Scholar 

  • Rayleigh, L.: On the capillary phenomena of jets. Proc. Royal. Soc. 29, 71–97 (1879)

    Article  Google Scholar 

  • Reid, W.H.: The oscillations of a viscous liquid drop. Q. Appl. Math. 18, 86–89 (1960)

    Article  MathSciNet  Google Scholar 

  • Rhim, W.-K., Ohsaka, K., Paradis, P.-F., Spjut, R.E.: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796–2801 (1999)

    Article  Google Scholar 

  • Schmitz, J., Brillo, J., Egry, I., Schmid-Fetzer, R.: Surface tension of liquid Al-cu binary alloys. Int. J. Mat. Res. 100, 1529–1535 (2009)

    Article  Google Scholar 

  • Schneider, S., Egry, I., Wunderlich, R., Willnecker, R., Pütz, M.: Evaluation of Thermophysical data from electromagnetic levitation experiments with digital image processing, proceeding of third international symposium on physical science in space 2008. J. Jpn. Soc. Microgravity Appl. 25 (2008)

  • Tamaru, H., Koyama, C., Saruwatari, H., Nakamura, Y., Ishikawa, T., Takada, T.: Status of the electrostatic levitation furnace (ELF) in the ISS-KIBO. Microgravity Science and Technology. 30, 643–651 (2018)

    Article  Google Scholar 

  • Trinh, E.H.: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instrum. 56, 2059 (1985)

    Article  Google Scholar 

  • Tsamopoulos, J.A., Brown, R.A.: Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519–537 (1983)

    Article  Google Scholar 

  • Watanabe, T.: Nonlinear oscillations and rotations of a liquid droplet. Int J Geol. 1, 5–13 (2010)

    Google Scholar 

  • Weber, J.K.R., Hampton, D.S., Merkley, D.R., Rey, C.A., Zatarski, M.M., Nordine, P.C.: Aero-acoustic levitation: a method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456 (1994)

    Article  Google Scholar 

  • Wunderlich, R. K., Mohr, M.: Complex oscillation patterns and non-linear fluid flow effects in the evaluation of the surface oscillation damping time constant in the oscillating drop method, High Temperatures-High Pressures (2018), submitted

  • Xiao, X., Hyers, R.W., Wunderlich, R.K., Fecht, H.-J., Matson, D.M.: Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement. Appl. Phys. Lett. 113, 011903 (2018)

    Article  Google Scholar 

  • Zhang, H., Zhong, C., Douglas, J.F., Wang, X., Cao, Q., Zhang, D., Jiang, J.-Z.: Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. J. Chem. Phys. 142, 164506 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

M. M., R. K. W. and H.-J. F. acknowledge the continued support by the German Space Agency DLR under contract 50WM1759 and the support by the European Space Agency ESA under contract AO-2009-1020.

S.K. and P.K.G. acknowledge the support from the German Space Center Space Management, contract No. 50WM1541, and from the Russian Scientific Foundation under the project no. 16-11-10095.

The work at the Washington University in St. Louis was supported by NASA under grants NNX10AU19G and NNX16AB52G. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NASA.

The work at the Zhejiang University in China was supported by the international cooperation project of China Manned Space Program, the National Natural Science Foundation of China (U1832203), National Key Research and Development Program of China (2016YFB0701203 and 2017YFA0403400), and the Fundamental Research Funds for the Central Universities are gratefully acknowledged.

The support from German Space Agency Research Center Cologne in conducting the experiments on MSL-EML and support in experiment preparation is gratefully acknowledged by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Mohr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohr, M., Wunderlich, R.K., Koch, S. et al. Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station. Microgravity Sci. Technol. 31, 177–184 (2019). https://doi.org/10.1007/s12217-019-9678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9678-1

Keywords

Navigation