Skip to main content
Log in

Modeling and Analysis of Ultra-Low Frequency Dynamics of Drag-Free Satellites

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This paper aims at deepening our understanding of the dynamics performance of the drag-free satellite at ultra-low frequency. A coupled modeling of dynamics which incorporate orbit dynamics, environment disturbance and interaction between the satellite and the proof mass is presented. Frequency bandwidth under investigation is extended from the micro-vibration frequency bandwidth (10 mHz to 100 mHz) to a broader bandwidth (0.1 mHz to 100 mHz) which partly covers the micro-gravity frequency bandwidth (<10 mHz). As two stringent requirements of drag-free satellite, the distance between the satellite COM (center of mass) and the proof mass COM, as well as the residual non-gravitational acceleration of the proof mass, is studied under the impacts of the atmospheric drag, the interaction between the satellite and the proof mass, and the orbit motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bai, Y., Li, Z., Hu, M., Liu, L., Qu, S., et al.: Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST. Sensors. 17(9), 1943 (2017)

    Article  Google Scholar 

  • Bonny, L. S.: Overview of Disturbance Reduction Requirements for LISA. California: Jet Propulsion Laboratory, California Institute of Technology (2002)

  • Canuto, E., Bona, B., Calafiore, G., Indri, M.: Drag free control for the European satellite GOCE. Part I: modelling. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on (Vol. 2, pp. 1269–1274). IEEE. (2002a)

  • Canuto, E., Bona, B., Calafiore, G., Indri, M.: Drag free control for the European satellite GOCE. Part II: digital control. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on (Vol. 4, pp. 4072–4077). IEEE. (2002b)

  • Canuto, E., Molano, A., Massotti, L.: Drag-free control of the GOCE satellite: noise and observer design. IEEE Trans. Control Syst. Technol. 18(2), 501–509 (2010)

    Article  Google Scholar 

  • Canuto, E.: Drag-free and attitude control for the GOCE satellite. Automatica. 44(7), 1766–1780 (2008)

    Article  MathSciNet  Google Scholar 

  • Canuto, E., Massotti, L.: All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronautica. 64(2–3), 325–344 (2009)

    Article  Google Scholar 

  • Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P.: A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Science and Technology. 26(3), 139–145 (2014)

    Article  Google Scholar 

  • Christophe, B., Marque, J. P., Foulon, B.: In-orbit data verification of the accelerometers of the ESA GOCE mission. In SF2A-2010: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (Vol. 1, p. 113) (2010)

  • Ciufolini, I., Matzner, R., Gurzadyan, V., Penrose, R.: A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment. The European Physical Journal C. 77(12), 819 (2017)

    Article  Google Scholar 

  • Conklin, J. W., Chilton, A., Olatunde, T. J., Apple, S., Parry, S., et al.: A UV LED-based Charge Management System for LISA. In American Astronomical Society Meeting Abstracts (Vol. 231) (2018)

  • Danzmann, K.: LISA mission overview. Adv. Space Res. 25(6), 1129–1136 (2000)

    Article  Google Scholar 

  • Drinkwater, M. R., Haagmans, R., Muzi, D., Popescu, A., Floberghagen, R., et al.: The GOCE gravity mission: ESA’s first core Earth explorer. In Proceedings of the 3rd international GOCE user workshop (pp. 6–8). Noordwijk, The Netherlands: European Space Agency (2006)

  • Everitt, C.W.F., Muhlfelder, B., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., et al.: The Gravity Probe B test of general relativity. Classical and Quantum Gravity. 32(22), 224001 (2015)

    Article  Google Scholar 

  • Fock, V.: The theory of space, time and gravitation. Elsevier (2015)

  • Gerardi, D., Allen, G., Conklin, J. W., Sun, K. X., DeBra, D., et al.: Advanced drag-free concepts for future space-based interferometers: acceleration noise performance. arXiv preprint arXiv:0910.0758 (2009)

  • Lange, B.: The drag-free satellite. AIAA J. 2(9), 1590–1606 (1964)

    Article  Google Scholar 

  • Li, H.Y., Hu, M.: Simulation and Controller Design for Drag-free and Attitude System of Single Test Mass Drag-free Satellite. Acta astronomica sinica. 52, 525–536 (2011)

    Google Scholar 

  • Li, Y., Luo, Z., Liu, H., Gao, R., Jin, G.: Laser Interferometer for Space Gravitational Waves Detection and Earth Gravity Mapping. Microgravity Science and Technology, 1–13 (2018)

  • Liu, H., Luo, Z., Jin, G.: The Development of Phasemeter for Taiji Space Gravitational Wave Detection. Microgravity Science and Technology, 1–7 (2018)

  • Nguyen, A.N., Conklin, J.W.: Three-axis drag-free control and drag force recovery of a single-thruster small satellite. J. Spacecr. Rocket. 52(6), 1640–1650 (2015)

    Article  Google Scholar 

  • Paris, C., Neubert, R.: Tests of LARES and CHAMP cube corner reflectors in simulated space environment. In Aerospace Conference, 2015 IEEE (pp. 1–9). IEEE. (2015)

  • Prieto, D., Ahmad, Z.: A drag free control based on model predictive techniques. In American Control Conference, 2005. Proceedings of the 2005 (pp. 1527–1532). IEEE. (2005)

  • Schleicher, A., Ziegler, T., Schubert, R., Brandt, N., Bergner, P., et al.: In-orbit performance of the LISA Pathfinder drag-free and attitude control system. CEAS Space Journal. 1–15 (2018)

  • Shi, L., Cao, X.B., Zhang, J.X., Zhang, S.J., Dong, X.G.: Survey of drag-free satellite. Journal of Astronautics. 31(6), 1511–1520 (2010)

    Google Scholar 

  • Sorrentino, F., Bongs, K., Bouyer, P., Cacciapuoti, L., De Angelis, M.: A compact atom interferometer for future space missions. Microgravity Science and Technology. 22(4), 551–561 (2010)

    Article  Google Scholar 

  • Tamaru, H., Koyama, C., Saruwatari, H., Nakamura, Y., Ishikawa, T., et al.: Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO. Microgravity Science and Technology. 1–9 (2018)

  • Touboul, P., Métris, G., Sélig, H., Le Traon, O., Bresson, A., et al.: Gravitation and Geodesy with Inertial Sensors, from Ground to Space. AerospaceLab Journal, (12), 1–16 (2016)

  • Ziegler, B., Blanke, M.: Drag-free motion control of satellite for high-precision gravity field mapping. In Control Applications, 2002. Proceedings of the 2002 International Conference on (Vol. 1, pp. 292–297). IEEE. (2002)

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) of China (grant no. 51675430 and grant no. 11402044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Competing interests

No competing financial interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, L. & Wang, Z. Modeling and Analysis of Ultra-Low Frequency Dynamics of Drag-Free Satellites. Microgravity Sci. Technol. 31, 151–160 (2019). https://doi.org/10.1007/s12217-019-9672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9672-7

Keywords

Navigation