Skip to main content

Advertisement

Log in

Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barjaktarović, ž., Nordheim, A., Lamkemeyer, T., Fladerer, C., Madlung, J., Hampp, R.: Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. J. Exp. Bot. 58, 4357–63 (2007)

    Article  Google Scholar 

  • Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 470 (1991)

    Article  Google Scholar 

  • Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–13 (1997)

    Article  MathSciNet  Google Scholar 

  • Boonsirichai, K., Guan, C., Chen, R., Masson, P.H.: Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant Biol. 53, 421–47 (2002)

    Article  Google Scholar 

  • Brooks, J.S., Reavis, J.A., Medwood, R.A., RA, Stalcup T.F., Meisel, M.W., et al.: New opportunities in science, materials, and biological systems in the low-gravity (magnetic levitation) environment (invited). J. Appl. Phys. 87, 6 (2000)

    Article  Google Scholar 

  • Buffett, B.A.: Tidal dissipation and the strength of the Earth’s internal magnetic field. Nature 468, 952–4 (2010)

    Article  Google Scholar 

  • Christianen, P.C.: Tuneable gravity using strong gradient magnetic fields. News of Elgra 7, 4 (2010)

    Google Scholar 

  • Denegre, J., Valles, J.J., Lin, K., Jordan, W., Mowry, K.: Cleavage plans in frogs eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. 95, 14729–32 (1998)

    Article  Google Scholar 

  • Dijkstra, C.E., Larkin, O.J., Anthony, P., Davey, M.R., Eaves, L., et al.: Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J. R. Soc. Interface 8, 334–44 (2011)

    Article  Google Scholar 

  • Geim, A.K., Simon, M.D., Boamfia, M.I., Helfinger, L.O.: Magnet levitation at your fingertips. Nature 400, 2 (1999)

    Article  Google Scholar 

  • Glover, P.M., Cavin, I., Qian, W., Bowtell, R., Gowland, P.A.: Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28, 349–61 (2007)

    Article  Google Scholar 

  • González-Camacho, F., Medina, F.J.: The nucleolar structure and the activity of nucleolin-like protein NopA100 during the cell cycle in proliferating plant cells. Histochem. Cell Biol. 125, 139–53 (2006)

    Article  Google Scholar 

  • Guevorkian, K., Valles, J.M. Jr.: Varying the effective buoyancy od cells using magnetic force. Appl. Phys. Lett. 84, 3 (2004)

    Article  Google Scholar 

  • Herranz, R., Medina, F.J.: Cell proliferation and plant development under novel altered gravity environments. Plant Biol. (Stuttg.) 16, 23–30 (2014)

    Article  Google Scholar 

  • Herranz, R., Larkin, O.J., Dijkstra, C.E., Hill, R.J., Anthony, P., et al.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012a)

    Article  Google Scholar 

  • Herranz, R., Larkin, O.J., Dijkstra, C.E., Hill, R.J.A., Anthony, P., et al.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012b)

    Article  Google Scholar 

  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M., et al.: Ground-based facilities for simulation of microgravity, including terminology and organism-specific recommendations for their use. Astrobiology 13, 1–17 (2013)

    Article  Google Scholar 

  • Herranz, R., Valbuena, M.A., Youssef, K., Medina, F.J.: Mechanisms of disruption of meristematic competence by microgravity in Arabidopsis seedlings. Plant Signal. Behav. 9, e28289 (2014)

    Article  Google Scholar 

  • Hill, R.J., Larkin, O.J., Dijkstra, C.E., Manzano, A.I., de Juan, E., et al.: Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. J. R. Soc. Interface 9, 1438–49 (2012)

    Article  Google Scholar 

  • Hoson, T., Kamisaka, S., Buchen, B., Sievers, A., Yamashita, M., Masuda, Y.: Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions. Adv. Space Res. 17, 47–53 (1996)

    Article  Google Scholar 

  • Ishii, Y., Hoson, T., Kamisaka, S., Miyamoto, K., Ueda, J., et al.: Plant growth processes in Arabidopsis under microgravity conditions simulated by a clinostat. Biol. Sci. Space 10, 3–7 (1996)

    Article  Google Scholar 

  • Kamal, K.Y., Hemmersbach, R., Medina, F.J., Herranz, R.: Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Life Sci. Space Res. 5, 6 (2015)

    Article  Google Scholar 

  • Kiss, J.Z.: Mechanisms of the early phases of plant gravitropism. Crit. Rev. Plant Sci. 19, 551–73 (2000)

    Article  Google Scholar 

  • Manzano, A.I., van Loon, J J.W.A., Christianen, P.C., Gonzalez-Rubio, J.M., Medina, F.J., Herranz, R.: Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13, 105 (2012)

    Article  Google Scholar 

  • Manzano, A.I., Larkin, O.J., Dijkstra, C.E., Anthony, P., Davey, M.R., et al.: Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biol. 13, 124 (2013)

    Article  Google Scholar 

  • Maret, G., Dransfeld, K.: Biomolecules and polymers in high steady magnetic fields topicsin. Top. Appl. Phys. 57, 62 (1985)

    Google Scholar 

  • Martzivanou, M., Babbick, M., Cogoli-Greuter, M., Hampp, R.: Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229, 155–62 (2006)

    Article  Google Scholar 

  • Matía, I., Gonzalez-Camacho, F., Herranz, R., Kiss, J.Z., Gasset, G., et al.: Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J. Plant Physiol. 167, 184–93 (2010)

    Article  Google Scholar 

  • May, M.J., Leaver, C.J.: Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103, 621–27 (1993)

    Google Scholar 

  • Medina, F.J., Cerdido, A., de Carcer, G.: The functional organization of the nucleolus in proliferating plant cells. Eur. J. Histochem. 44, 117–31 (2000)

    Google Scholar 

  • Menges, M., Murray, J.A.: Synchronization, transformation, and cryopreservation of suspension-cultured cells. Methods Mol. Biol. 323, 45–61 (2006)

    Google Scholar 

  • Morita, M.T.: Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 61, 705–20 (2010)

    Article  Google Scholar 

  • Perenboom, J A.A.J., Wiegers, S.A.J., Christianen, P.C., Zeitler, U., Maan, J.C.: The new installation at the Nijmegen High Field Magnet Laboratory. Physica B 346, 4 (2004)

    Google Scholar 

  • Raff, M.C.: Size control: the regulation of cell numbers in animal development. Cell 86, 173–5 (1996)

    Article  Google Scholar 

  • Simon, M.D., Geim, A.K.: Diamagnetic levitation: flying frogs and floating magnets. J. Appl. Phys. 87, 5 (2000)

    Article  Google Scholar 

  • Steel, RGDaJHT: Principles and Procedures of statistics. A. biometerical Approach 2nd Ed. Mac. Gaw Hill Book Company, New York (1980)

    MATH  Google Scholar 

  • Ueno, S., Iwasaka, M.: Properties of diamagnetic fluid in high gradient magnetic fields. J. Appl. Phys. 75, 3 (1997)

    Google Scholar 

  • Valles, J.M. Jr, Maris, H.J., Seidel, G.M., Tang, J., Yao, W.: Magnetic levitation-based Martian and lunar gravity simulators. Adv. Space Res. 36, 5 (2005)

    Article  Google Scholar 

  • Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., et al.: In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–5 (2000)

    Article  Google Scholar 

  • Wiegers, S.A.J., Christianen, P.C., Engelkamp, H., Ouden, A., Perenboom, J A.A.J., et al.: The High Field Magnet Laboratory at Radboud University Nijmegen. J. Low Temp. Phys. 159, 5 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Julio Sáez-Vásquez (CNRS-University of Perpignan-Via Domitia, Perpignan, France) for his generous supply of anti-nucleolin antibody. This work was supported by grants of the Spanish National Plan for Research and Development, Ref. Nos. AYA2010-11834-E, and AYA2012-33982, access to Magnet facilities by the European Union (EUROMAGNET II) Project 2010.17 (NSO06-209) to FJM, the GBF project #4200022650 and #4000105761 to RH and ESA grant contract 4000107455112/NL/PA to JvL. KYK was supported by the Spanish CSIC JAE-PreDoc Program (Ref. JAEPre_2010_01894).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raúl Herranz or F. Javier Medina.

Additional information

Supplementary Material 1

Videoclip demonstrating that the cells cannot levitate at the same point than the droplet. A lateral mirror provides us a lateral view of the droplet that normally is observed from the top of the magnetic bore.

Khaled Y. Kamal and Raúl Herranz have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 105 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, K.Y., Herranz, R., van Loon, J.J.W.A. et al. Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures. Microgravity Sci. Technol. 28, 309–317 (2016). https://doi.org/10.1007/s12217-015-9472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9472-7

Keywords

Navigation