Skip to main content
Log in

On the local convergence of a third-order iterative scheme in Banach spaces

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In a Banach space setting, we provide the local convergence analysis of a cubically convergent nonlinear system solver assuming that the first-order Fréchet derivative belongs to the Lipschitz class. The significance of this study is that it avoids the standard practice of Taylor expansion in the analysis of convergence and extends the applicability of the algorithm by using the theory based on the first-order derivative only. Also, our analysis provides the radii of convergence balls and computable error bounds along with the uniqueness of the solution. Furthermore, the generalization of this analysis using Hölder condition is studied. Different numerical tests confirm that the new technique produces better results, and it is useful in solving such problems where previous studies fail to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyros, I.K., Magreñán, Á.A.: A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative. Numer. Alg. 71(1), 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  2. Argyros, I.K., George, S.: Local convergence of deformed Halley method in Banach space under Hölder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015)

    Article  MathSciNet  Google Scholar 

  3. Argyros, I.K., George, S., Magreñán, Á.A.: Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

    Article  MathSciNet  Google Scholar 

  4. Argyros, I.K., George, S.: Local convergence of modified Halley-like methods with less computation of inversion. Novi Sad J. Math. 45(2), 47–58 (2015)

    Article  MathSciNet  Google Scholar 

  5. Singh, S., Gupta, D.K., Badoni, R.P., Martínez, E., Hueso, J.L.: Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces. Calcolo 54(2), 527–539 (2017)

    Article  MathSciNet  Google Scholar 

  6. Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Amat, S., Argyros, I.K., Busquier, S., Hernández-Verón, M.A., Martínez, E.: On the local convergence study for an efficient k-step iterative method. J. Comput. Appl. Math. 343, 753–761 (2018)

    Article  MathSciNet  Google Scholar 

  8. Argyros, I.K., Hilout, S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  9. Argyros, I.K., George, S.: Local convergence of two competing third order methods in Banach space. Appl. Math. 41(4), 341–350 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K., González, D.: Local convergence for an improved Jarratt-type method in Banach space. Int. J. Interact. Multimed. Artif. Intell. 3(Special Issue on Teaching Mathematics Using New and Classic Tools), 20–25 (2015)

    Google Scholar 

  11. Argyros, I.K., Cho, Y.J., George, S.: Local convergence for some third order iterative methods under weak conditions. J. Korean Math. Soc. 53(4), 781–793 (2016)

    Article  MathSciNet  Google Scholar 

  12. Sharma, D., Parhi, S.K.: On the local convergence of modified Weerakoon’s method in Banach spaces. J. Anal. (2019). https://doi.org/10.1007/s41478-019-00216-x

    Article  MATH  Google Scholar 

  13. Cordero, A., Ezquerro, J.A., Hernandez-Veron, M.A.: On the local convergence of a fifth-order iterative method in Banach spaces. J. Math. 46, 53–62 (2014)

    Google Scholar 

  14. Noor, M.A., Waseem, M.: Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 57, 101–106 (2009)

    Article  MathSciNet  Google Scholar 

  15. Argyros, I.K.: Convergence and Application of Newton-type Iterations. Springer, Berlin (2008)

    MATH  Google Scholar 

  16. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. World Scientific Publishing House, New Jersey (2013)

    Book  Google Scholar 

  17. Petković, M.S., Neta, B., Petković, L., Dzunić, D.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  18. Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Robert E. Krieger, New York (1979)

    MATH  Google Scholar 

  19. Traub, J.F.: Iterative Methods for Solution of Equations. Prentice-Hal, Englewood Cliffs (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank University Grants Commission of India for the financial support (ID: NOV2017-402662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Parhi, S.K. On the local convergence of a third-order iterative scheme in Banach spaces. Rend. Circ. Mat. Palermo, II. Ser 70, 311–325 (2021). https://doi.org/10.1007/s12215-020-00500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00500-x

Keywords

Mathematics Subject Classification

Navigation