Advertisement

Different equivalent approaches to the geodetic reference system

  • Athanasios Dermanis
  • Fernando SansòEmail author
Satellite Positioning for Geosciences
  • 61 Downloads

Abstract

A new approach to the determination of least-squares solutions for the rank deficient model is presented, which, in place of the classical minimal constraints, utilizes the expression of the excess parameters as a function of a subset of unknown parameters describing the model without ambiguities. The role of the lack of reference system definition in the resulting rank deficiency is explained, first for the original non-linear model case, and is specialized next to the linearized model. The whole set of solutions is parameterized in terms of two matrices defining the linearized relation from the model describing parameters to the remaining ones. Particular values are obtained for the case of solution with minimal trace of its covariance matrix, as well for the solution for minimum norm. Finally, the connection with the existing classical approach is established, while the approach is further elaborated in terms of the full-rank decompositions of the model design matrix.

Keywords

Geodetic reference system Rank deficient model Least-squares solutions New approach 

References

  1. Baarda W (1995) Linking up spatial models in geodesy. Extended S-Transformations. Netherlands Geodetic Com-mission, Publ. in Geodesy, New Series, no. 41, DelftGoogle Scholar
  2. Biagi L, Sanso F (2003) Sistemi di riferimento in geodesia: algebra e geometria dei minimi quadrati per un modello con deficienza di rango. Bollettino di Geodesia e Scienze Affini. Parte prima: Anno LXII, N. 4, 261-284. Parte seconda: Anno LXIII, N. 1, 29–52. Parte terza: Anno LXIII, N. 2:129–149Google Scholar
  3. Bjerhammar A (1951) Rectangular reciprocal matrices with special emphasis to geodetic calculations. Bull Géodésique 52:188–220CrossRefGoogle Scholar
  4. Blaha G (1971) Inner adjustment constraints with emphasis on range observations. Department of Geodetic Science, Report 148, The Ohio State University, ColumbusGoogle Scholar
  5. Blaha G (1982) Free networks: minimum norm solution as obtained by the inner adjustment constraint method. Bull Géodésique 56:209–219CrossRefGoogle Scholar
  6. Dermanis A (1995) The nonlinear and space-time geodetic datum problem. In: Intern. Meeting “Mathematische Methoden der Geodäsie”, Oberwolfach, 1–7 Oct. 1995. http://der.topo.auth.gr/
  7. Dermanis A (1998) Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem. J Geodesy 72:71–100CrossRefGoogle Scholar
  8. Dermanis A (2000) Establishing global reference frames. Nonlinear, temporal, geophysical and stochastic aspects. In: Sideris M (ed) Gravity, geoid and geodynamics 2000, p. 35–42, IAG Symposia, vol. 123, Springer, Heidelberg 2001Google Scholar
  9. Dermanis A, 2003. The rank deficiency in estimation theory and the definition of reference frames. In: Sansò F (ed) V Hotine-Marussi Symposium on Mathematical Geodesy. IAG Symposia 127, pp 145–156. Springer, BerlinGoogle Scholar
  10. Dermanis A (2016) Global reference systems: theory and open questions. invited paper at the academia dei lincei session, In: VIII Hotine-Marussi symposium on mathematical geodesy, Rome, 17–21 June, 2013. Sneeuw N, Novák P, Crespi M, Sansò F (eds): VIII Hotine-Marussi Symposium on Mathematical Geodesy, IAG Symposia, vol 142, pp 9–16. Springer International Publishing, SwitzerlandGoogle Scholar
  11. Grafarend E, Schaffrin B (1974) Unbiased free net adjustment. Surv Rev 22(171):200–218CrossRefGoogle Scholar
  12. Grafarend E, Schaffrin B (1976) Equivalence of estimable quantities and invariants in geodetic networks. Zeit-schrift für Vemessungswesen 101(11):485–491Google Scholar
  13. Koch K-R (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  14. Meissl P (1962) Die innere Genauigkeit eines Punkthaufens. Österreichers Zeitschrift für Vermessungswesen, 50, 159–165 and 186–194Google Scholar
  15. Meissl P (1965) Uber die innere Genauigkeit dreidimensionalern Punkthaufen. Zeitschrift für Vermessungswesen, 1965, 90. Jahrgang. Heft 4:109–118Google Scholar
  16. Meissl P (1969) Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens. Deutsche Geodät. Komm. Reihe A Nr 61:8–21Google Scholar
  17. Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Philos Soc 51:406–413CrossRefGoogle Scholar
  18. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2017

Authors and Affiliations

  1. 1.Aristotle University ThessalonikiThessalonikiGreece
  2. 2.Politecnico di MilanoMilanItaly

Personalised recommendations