Skip to main content
Log in

Mutations and sequence variants in GDF9, BMP15, and BMPR1B genes in Maremmana cattle breed with single and twin births

  • Coastal Forest Ecosystem near Rome
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The families of TGF-β (transforming growth factor-β) proteins are the most important growth factors in the ovary, and three related oocyte-derived members, namely GDF9 (growth differentiation factor 9), BMP15 (bone morphogenetic protein 15), and BMPR1B (bone morphogenetic protein receptor 1B), have been shown to be essential for follicular growth and ovulation. Although the essential role of these genes in determining litter size in sheep and mouse and in controlling folliculogenesis in human has been demonstrated, there is limited information on their action in other species, especially in bovine. Bovine is a monotocous specie, as humans, with one or sometimes two newborns per birth. The twinning is a complex trait determined by both genetic and environmental factors. This study aimed at investigating the nucleotide sequences of different fragments of GDF9, BMP15, and BMPR1B genes in Maremmana cows reared in Castelporziano Presidential Estate (Rome). In this herd, in the period between 1996 and 2008, a twinning rate of 12 % (on average) was observed. We identified nine single-nucleotide polymorphisms (SNPs), five in the coding region, and four in the noncoding region: Two polymorphisms caused non-synonymous mutations, g.6045 G>A (V202I) in the BMP15 gene, and g.231 T>C (L66S) in GDF9 gene. The mutation L66S was found only in cows with double birth. In the literature, there are different evidences that mutations in proregion of GDF9 protein could affect its correct function. A relationship between mutations in this region of protein and granulosa cells proliferation and oocyte development was hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bierman CD, Kim E, Weigel K, Berger PJ, Kirkpatrick BW (2010) Fine-mapping quantitative trait loci for twinning rate on Bos taurus chromosome 14 in North American Holsteins. J Anim Sci 88(8):2556–2564. doi:10.2527/jas.2010-2808

    Article  CAS  Google Scholar 

  • Bodin L, Di Pasquale E, Fabre S, Bontoux M, Monget P, Persani L, Mulsant P (2007) A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 148(1):393–400. doi:10.1210/en.2006-0764

    Article  CAS  Google Scholar 

  • Boichard D (2002) Pedig: a fortran package for pedigree analysis suited to large populations. In: Proceeding of 7th World Congress on Genetics Applied to Livestock Production, paper 28–13

  • Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 23(6):787–823. doi:10.1210/er.2002-0003

    Article  CAS  Google Scholar 

  • Christin-Maitre S, Tachdjian G (2010) Genome-wide association study and premature ovarian failure. Ann Endocrinol 71(3):218–221. doi:10.1016/j.ando.2010.02.014

    Article  CAS  Google Scholar 

  • Davis GH, Galloway SA, Ross IK, Gregan SM, Ward J, Nimbkar BV, Ghalsasi PM, Nimbkar C, Gray GD, Subandriyo Inounu I, Tiesnamurti B, Martyniuk E, Eythorsdottir E, Mulsant P, Lecerf F, Hanrahan JP, Bradford GE, Wilson T (2002) DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biol Reprod 66(6):1869–1874. doi:10.1095/biolreprod66.6.1869

    Article  CAS  Google Scholar 

  • Davis GH, Balakrishnan L, Ross IK, Wilson T, Galloway SM, Lumsden BM, Hanrahan JP, Mullen M, Mao XZ, Wang GL, Zhao ZS, Zeng YQ, Robinson JJ, Mavrogenis AP, Papachristoforou C, Peter C, Baumung R, Cardyn P, Boujenane I, Cockett NE, Eythorsdottir E, Arranz JJ, Notter DR (2006) Investigation of the Booroola (FecB) and Inverdale (FecX(I)) mutations in 21 prolific breeds and strains of sheep sampled in 13 countries. Anim Reprod Sci 92(1–2):87–96. doi:10.1016/j.anireprosci.06.001

    Article  CAS  Google Scholar 

  • Demars J, Fabre S, Sarry J, Rossetti R, Gilbert H, Persani L, Tosser-Klopp G, Mulsant P, Nowak Z, Drobik W, Martyniuk E, Bodin L (2013) Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep. PLoS Genet 9(4):e1003482. doi:10.1371/journal.pgen.1003482

    Article  CAS  Google Scholar 

  • Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67. doi:10.1093/nar/gkp215

    Article  Google Scholar 

  • Di Pasquale E, Beck-Peccoz P, Persani L (2004) Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 75(1):106–111

    Article  Google Scholar 

  • Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, Einaudi S, Radetti G, Russo G, Sacco M, Wasniewska M, Cole T, Beck-Peccoz P, Nelson LM, Persani L (2006) Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab 91(5):1976–1979. doi:10.1210/jc.2005-265

    Article  Google Scholar 

  • Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, Deenadayal M, Gupta N, Chakrabarty B, Singh L (2006) Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet 119(4):408–415

    Article  CAS  Google Scholar 

  • Dixit H, Rao L, Padmalatha V, Raseswari T, Kapu AK, Panda B, Murthy K, Tosh D, Nallari P, Deenadayal M, Gupta N, Chakrabarthy B, Singh L (2010) Genes governing premature ovarian failure. Reprod Biomed Online 20(6):724–740. doi:10.1016/j.rbmo.2010.02.018

    Article  CAS  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383(6600):531–535. doi:10.1038/383531a0

    Article  CAS  Google Scholar 

  • Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reprod 122:829–838. doi:10.1530/rep.0.1220829

    Article  CAS  Google Scholar 

  • Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos O (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25(3):279–283. doi:10.1038/77033

    Article  CAS  Google Scholar 

  • Gregory KE, Bennett GL, VanVleck LD, Echternkamp SE, Cundiff LV (1997) Genetic and environmental parameters for ovulation rate, twinning rate, and weight traits in a cattle population selected for twinning. J Anim Sci 75:1213–1222

    CAS  Google Scholar 

  • Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM (2004) Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 70(4):900–909. doi:10.1095/biolreprod.103.023093

    Article  CAS  Google Scholar 

  • Hoekstra C, Zhao ZZ, Lambalk CB, Willemsen G, Martin NG, Boomsma DI, Montgomery GW (2008) Dizygotic twinning. Hum Reprod Upd 14(1):37–47. doi:10.1093/humupd/dmm036

    Article  CAS  Google Scholar 

  • Hosoe M, Kaneyama K, Ushizawa K, Hayashi K, Takahashi T (2011) Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod Biol Endocrinol 9:33. doi:10.1186/1477-7827-9-33

    Article  CAS  Google Scholar 

  • Kim ES, Shi X, Cobanoglu O, Weigel K, Berger PJ, Kirkpatrick BW (2009) Refined mapping of twinning-rate quantitative trait loci on bovine chromosome 5 and analysis of insulin-like growth factor-1 as a positional candidate gene. J Anim Sci 87(3):835–843. doi:10.2527/jas.2008-1252

    Article  CAS  Google Scholar 

  • Kirkpatrick BW, Morris CA (2012) Discovery of a major gene for bovine ovulation rate. In: plant and animal genome XX conference, San Diego, CA, abstr P0572

  • Komisarek J, Dorynek Z (2002) Genetic aspects of twinning in cattle. J Appl Genet 43(1):55–68

    Google Scholar 

  • Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K, Bourcigaux N, Jacquesson L, Bouchard P, Frydman R, Dewailly D, Reyss AC, Jeffery L, Bachelot A, Massin N, Fellous M, Veitia RA (2006) Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol 154(5):739–744

    Article  CAS  Google Scholar 

  • Li Y, Li RQ, Ou SB, Zhang NF, Ren L, Wei LN, Zhang QX, Yang DZ (2014) Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod Biol Endocrinol 12:81. doi:10.1186/1477-7827-12-81

    Article  Google Scholar 

  • Luong HT, Chaplin J, McRae AF, Medland SE, Willemsen G, Nyholt DR, Henders AK, Hoekstra C, Duffy DL, Martin NG, Boomsma DI, Montgomery GW, Painter JN (2011) Variation in BMPR1B, TGFRB1 and BMPR2 and control of dizygotic twinning. Twin Res Hum Genet 14(5):408–416. doi:10.1375/twin.14.5.408

    Article  Google Scholar 

  • Martinez-Royo A, Jurado JJ, Smulders JP, Martí JI, Alabart JL, Roche A, Fantova E, Bodin L, Mulsant P, Serrano M, Folch J, Calvo JH (2008) A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Anim Genet 39(3):294–297. doi:10.1111/j.1365-2052.2008.01707.x

    Article  CAS  Google Scholar 

  • Monteagudo LV, Ponz R, Tejedor MT, Laviña A, Sierra I (2009) A 17 bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Anim Reprod Sci 110(1–2):139–146. doi:10.1016/j.anireprosci.2008.01.005

    Article  CAS  Google Scholar 

  • Montgomery GW, Zhao ZZ, Marsh AJ, Mayne R, Treloar SA, James M, Martin NG, Boomsma DI, Duffy DL (2004) A deletion mutation in GDF9 in sisters with spontaneous DZ twins. Twin Res 7:548–555

    Article  Google Scholar 

  • Mullen MP, Hanrahan JP (2014) Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finnsheep. PLoS ONE 9(4):e95251. doi:10.1371/journal.pone.0095251

    Article  Google Scholar 

  • Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riquet J, Monniaux D, Callebaut I, Cribiu E, Thimonier J, Teyssier J, Bodin L, Cognie Y, Chitour N, Elsen JM (2001) Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc Natl Acad Sci USA 98(9):5104–5109. doi:10.1073/pnas.091577598

    Article  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814. doi:10.1093/nar/gkg509

    Article  CAS  Google Scholar 

  • Nicol L, Bishop SC, Pong-Wong R, Bendixen C, Holm LE, Rhind SM, McNeilly AS (2009) Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 138(6):921–933. doi:10.1530/REP-09-0193

    Article  CAS  Google Scholar 

  • Nilsson E, Zhang B, Skinner MK (2013) Gene bionetworks that regulate ovarian primordial follicle assembly. BMC Genom 14:496. doi:10.1186/1471-2164-14-496

    Article  CAS  Google Scholar 

  • Otsuka F, McTavish KJ, Shimasaki S (2011) Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev 78(1):9–21. doi:10.1002/mrd.21265

    Article  CAS  Google Scholar 

  • Painter JN, Willemsen G, Nyholt D, Hoekstra C, Duffy DL, Henders AK, Wallace L, Healey S, Cannon-Albright LA, Skolnick M, Martin NG, Boomsma DI, Montgomery GW (2010) A genome wide linkage scan for dizygotic twinning in 525 families of mothers of dizygotic twins. Hum Reprod 25(6):1569–1580. doi:10.1093/humrep/deq084

    Article  CAS  Google Scholar 

  • Palmer JS, Zhao ZZ, Hoekstra C, Hayward NK, Webb PM, Whiteman DC, Martin NG, Boomsma DI, Duffy DL, Montgomery GW (2006) Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J Clin Endocrinol Metab 91:4713–4716. doi:10.1210/jc.2006-0970

    Article  CAS  Google Scholar 

  • Persani L, Rossetti R, Cacciatore C, Fabre S (2011) Genetic defects of ovarian TGF-β-like factors and premature ovarian failure. J Endocrinol Invest 34(3):244–251. doi:10.3275/7502

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2007) SAS/STAT User’s Guide, Version 9.1. SAS Institute Inc., Cary, NC, USA

  • Scaramuzzi RJ, Baird DT, Campbell BK, Driancourt MA, Dupont J, Fortune JE, Gilchrist RB, Martin GB, McNatty KP, McNeilly AS, Monget P, Monniaux D, Vinoles C, Webb R (2011) Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev 23:444–467. doi:10.1071/RD09161

    Article  CAS  Google Scholar 

  • Shabir M, Ganai TAS (2012) Nucleotide sequencing and DNA polymorphism studies of BMP 15 gene in Corriedale and local Kashmir valley sheep (Ovis aries). Gene 499(1):231–235. doi:10.1016/j.gene.2012.02.019

    Article  CAS  Google Scholar 

  • Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z, Fu A, Moore S (2008) Polymorphisms and haplotypes in the bovine NPY, GHR, GHRL, IGF2, UCP2, and UCP3 genes and their associations with measures of growth, performance, feed efficiency and carcass merit in beef cattle. J Anim Sci 86(1):1–16. doi:10.2527/jas.2006-799

    Article  CAS  Google Scholar 

  • Shimasaki S, Moore RK, Otsuka F, Erickson GF (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25(1):72–101. doi:10.1210/er.2003-0007

    Article  CAS  Google Scholar 

  • Silva del Rio N, Stewart S, Rapnicki P, Chang YM, Fricke PM (2007) An observational analysis of twin births, calf sex ratio, and calf mortality in Holstein dairy cattle. J Dairy Sci 90:1255–1264

    Article  CAS  Google Scholar 

  • Silva BDM, Castro EA, Souza CJH, Paiva SR, Sartori R, Franco MM, Azevedo HC, Silva TASN, Vieira AMC, Neves JP, Melo EO (2011) A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Anim Genet 42(1):89–92. doi:10.1111/j.1365-2052.2010.02078.x

    Article  CAS  Google Scholar 

  • Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135(1):111–121. doi:10.1242/dev.009068

    Article  CAS  Google Scholar 

  • Su YQ, Sugiura K, Eppig JJ (2009) Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 27(1):32–42. doi:10.1055/s-0028-1108008

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Tang KQ, Yang WC, Li SJ, Yang LG (2013a) Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows. Genet Mol Res 12(1):390–399. doi:10.4238/2013

    Article  CAS  Google Scholar 

  • Tang KQ, Yang WC, Zhang XX, Yang LG (2013b) Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls. Genet Mol Res 12(3):2189–2195. doi:10.4238/2013

    Article  CAS  Google Scholar 

  • Våge DI, Husdal M, Kent MP, Klemetsdal G, Boman IA (2013) A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet 14:1. doi:10.1186/1471-2156-14-1

    Article  Google Scholar 

  • Vinet A, Drouilhet L, Bodin L, Mulsant P, Fabre S, Phocas F (2012) Genetic control of multiple births in low ovulating mammalian species. Mamm Genome 23:727–740. doi:10.1007/s00335-012-9412-4

    Article  Google Scholar 

  • Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O’Connell AR, McNatty KP, Montgomery GW (2001) Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod 64(4):1225–1235. doi:10.1095/biolreprod64.4.1225

    Article  CAS  Google Scholar 

  • Yan C, Wang P, DeMayo J, Elvin JA, Carino C, Prasad SV, Skinner SS, Dumbar BS, Dube JL, Celeste AJ, Matzuk MM (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian functions. Mol Endocrinol 15(6):854–866

    Article  CAS  Google Scholar 

  • Zhang LP, Gan QF, Zhang XH, Li HD, Hou GY, Li JY, Gao X, Ren HY, Chen JB, Xu SZ (2009) Detecting a deletion in the coding region of the bovine bone morphogenetic protein 15 gene (BMP15). J Appl Genet 50(2):145–148. doi:10.1007/BF03195665

    Article  CAS  Google Scholar 

  • Zhao ZZ, Painter JN, Palmer JS, Webb PM, Hayward NK, Whiteman DC, Boomsma DI, Martin NG, Duffy DL, Montgomery GW (2008) Variation in bone morphogenetic protein 15 is not associated with spontaneous human dizygotic twinning. Hum Reprod 23(10):2372–2379. doi:10.1093/humrep/den268

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gennaro Catillo for the development of the statistical model and Maria Stella Ranieri, Mauro Fioretti, Luca Buttazzoni, Umberto Bernabucci, and Riccardo Negrini for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Marchitelli.

Additional information

This peer-reviewed article is a result of the multidisciplinary project coordinated by the “Accademia Nazionale delle Scienze detta dei XL,” Rome, Italy, in the area of the Presidential Estate of Castelporziano near Rome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchitelli, C., Nardone, A. Mutations and sequence variants in GDF9, BMP15, and BMPR1B genes in Maremmana cattle breed with single and twin births. Rend. Fis. Acc. Lincei 26 (Suppl 3), 553–560 (2015). https://doi.org/10.1007/s12210-015-0418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0418-1

Keywords

Navigation