Skip to main content
Log in

Experimental Investigation of Hydrodynamic Characteristic of a New Rotating Stream Tray

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The hydrodynamic characteristic of a new rotating stream tray (NRST) was investigated. The tests were carried out using an air–water/oxygen experimental system in a column with a diameter of 500 mm. The hydrodynamic parameters studied were dry plate pressure drop, wet plate pressure drop, weeping, entrainment, and Murphree liquid efficiency. The results showed that the NRST has excellent performance in terms of high operational flexibility. The pressure drop, weeping rate, and entrainment rate remained low even under a high-capacity operation. Correlations of pressure drop, weeping, and entrainment for the NRST were obtained by regression analysis. The results can provide some important theoretical guidance for the development of this type of trays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

e :

Entrainment (kg)

e v :

Entrainment rate

E ml :

Murphree liquid efficiency

F s :

F-factor (based on superficial gas velocity) (m/s (kg/m3)0.5)

g :

Acceleration of gravity (m/s2)

G :

Gas mass flow rate (kg/s)

M L :

Weeping (kg)

Q :

Liquid flow rate across tray section (m3/(h m2))

Q v :

Liquid volume flow rate (m3/h)

SD:

Standard deviations of correlations

t e :

Time of collecting the entrainment liquid (s)

t w :

Time of collecting the weeping liquid (s)

u h :

Gas velocity through the plate holes (m/s)

u s :

Gas superficial velocity (m/s)

x i :

Mass fraction of oxygen in the liquid phase at the inlet (mg/L)

x o :

Mass fraction of oxygen in the liquid phase at the outlet (mg/L)

x * :

Equilibrium mass fraction of oxygen in the liquid phase at the test temperature (mg/L)

\(\Delta P\) :

Pressure drop (Pa)

\(\Delta P_{\text{d}}\) :

Dry plate pressure drop (Pa)

\(\Delta P_{\text{w}}\) :

Wet plate pressure drop (Pa)

\(\xi\) :

Dry plate pressure drop coefficient

\(\rho_{\text{G}}\) :

Gas density (kg/m3)

\(\rho_{\text{L}}\) :

Liquid density (kg/m3)

Φ :

Diameter (mm)

\(\omega\) :

Weeping rate

References

  1. OlujićŽ Jödecke M, Shilkin A et al (2009) Equipment improvement trends in distillation. Chem Eng Process 48(6):1089–1104

    Article  Google Scholar 

  2. Wang CR (2010) Study on classification and application of the distillation. Min Metall 19(2):55–56 , 62 (in Chinese)

    Google Scholar 

  3. Fair JR, Trutna WR, Seibert AF (1999) A new, ultracapacity tray for distillation columns. Chem Eng Res Des 77(7):619–626

    Article  Google Scholar 

  4. Vennavelli AN, Whiteley JR, Resetarits MR (2012) New fraction jetting model for distillation sieve tray efficiency prediction. Ind Eng Chem Res 51(35):11458–11462

    Article  Google Scholar 

  5. Zhang L, Liu X, Li H et al (2012) Hydrodynamic and mass transfer performances of a new SiC foam column tray. Chem Eng Technol 35(12):2075–2083

    Article  Google Scholar 

  6. Brahem R, Royon-Lebeaud A, Legendre D et al (2013) Experimental hydrodynamic study of valve trays. Chem Eng Sci 100:23–32

    Article  Google Scholar 

  7. Jiang B, Liu PF, Zhang LH et al (2013) Hydrodynamics and mass-transfer analysis of a distillation ripple tray by computational fluid dynamics simulation. Ind Eng Chem Res 52(49):17618–17626

    Article  Google Scholar 

  8. Vanaki SM, Ganesan P, Mohammed HA (2016) Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev 54:1212–1239

    Article  Google Scholar 

  9. Zhang LH, Li ZJ, Yang N et al (2016) Hydrodynamics and mass transfer performance of vapor-liquid flow of orthogonal wave tray column. J Taiwan Inst Chem Eng 63:6–16

    Article  Google Scholar 

  10. Tan TE, Wang DH (1985) The rotating stream tray. Bull Sci Technol 1:43–44 (in Chinese)

    Google Scholar 

  11. Chen JM, Tan T (1998) Experimental and theoretical investigation of gas flow field on a rotating stream tray. Chem Eng Commun 168(1):243–257

    Article  Google Scholar 

  12. Shao XF, Wu ZB (2004) Simulation and analysis on the two-phase flow fields in a rotating-stream-tray absorber by using computational fluid dynamics. Chin J Chem Eng 12(2):169–173

    Google Scholar 

  13. Chen JM, Tan T (1996) Experimental studies of flow fields on rotating stream tray with laser Droppler anemometer. Chin J Chem Eng 24:59–64 (in Chinese)

    Google Scholar 

  14. Sun WS, Wu ZB, Li Y et al (2002) Sodium-enhanced limestone wet FGD in rotating-stream tray scrubber. Chin J Environ Sci 23(5):105–108

    Google Scholar 

  15. Chen JM, Tan TE, Shi XN (1993) Gas flow field above rotating stream tray. J Chem Eng Chin Univ 3:235–241

    Google Scholar 

  16. He SC, Yuan HX, Fu SC et al (2011) Numerical simulation of velocity and pressure in gas phase in rotating stream tray column. Chem Ind Eng Prog 11:2399–2403

    Google Scholar 

  17. Sun YQ, Chen JM, Song S (2007) Industrial treatment of nitrogen oxide waste gas with rotating-stream-tray scrubber. Bull Sci Technol 23(5):751–754 (in Chinese)

    Google Scholar 

  18. Shao XF, Wu ZB (2004) Simulation and analysis on the two-phase flow fields in a rotating-stream-tray absorber by using computational fluid dynamics. Chin J Chem Eng 12(2):169–173

    Google Scholar 

  19. Li GW, Shi JF (1996) Hydromechanics of rotative-stream tray. Environ Eng 14:28–34 (in Chinese)

    Google Scholar 

  20. Yu R, Zhu HM (2018) Impact of length of Baffle in structured packing on pressure drop and mass transfer. Chem Ind Eng 35(4):58–65

    MathSciNet  Google Scholar 

  21. Wu JN, Wang Y, Xu EL et al (2018) Design and performance tests of motor-driven rotary energy recovery device. Chem Ind Eng 35(5):42–48

    Google Scholar 

  22. Bennett DL, Agrawal R, Cook PJ (1983) New pressure drop correlation for sieve tray distillation columns. AIChE J 29(3):434–442

    Article  Google Scholar 

  23. Zarei T, Rahimi R, Zarei A et al (2013) Hydrodynamic characteristic of conical cap tray: experimental studies on dry and total pressure drop, weeping and entrainment. Chem Eng Process 64:17–23

    Article  Google Scholar 

  24. Vitankar VS, Dhotre MT, Joshi JB (2002) A low Reynolds number k-ε model for the prediction of flow pattern and pressure drop in bubble column reactors. Chem Eng Sci 57(16):3235–3250

    Article  Google Scholar 

  25. Wijn EF (1998) On the lower operating range of sieve and valve trays. Chem Eng J 70(2):143–155

    Article  Google Scholar 

  26. Jaćimović BM (2000) Entrainment effect on tray efficiency. Chem Eng Sci 55(18):3941–3949

    Article  Google Scholar 

  27. Thomas WJ, Ogboja O (1978) Hydraulic studies in sieve tray columns. Ind Eng Chem Proc Des Dev 17(4):429–443

    Article  Google Scholar 

  28. Kister HZ, Haas JR (1988) Entrainment from sieve trays in the froth regime. Ind Eng Chem Res 27(12):2331–2341

    Article  Google Scholar 

  29. Jaćimović BM, Genić SB (2011) Tray efficiency versus stripping factor. Ind Eng Chem Res 50(12):7445–7451

    Article  Google Scholar 

  30. Luo N, Qian F, Ye ZC et al (2012) Estimation of mass-transfer efficiency for industrial distillation columns. Ind Eng Chem Res 51(7):3023–3031

    Article  Google Scholar 

  31. Wang HH, Niu XW, Li CL et al (2017) Combined trapezoid spray tray (CTST): a novel tray with high separation efficiency and operation flexibility. Chem Eng Process 112:38–46

    Article  Google Scholar 

  32. Li QS, Zhang MX, Tang XF et al (2013) Flow-guided sieve-valve tray (FGS-VT): a novel tray with improved efficiency and hydrodynamics. Chem Eng Res Des 91(6):970–976

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Shenzhen Science and Technology Research and Development Fund (JCYJ20160331113033413 and JCYJ20150630114140637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangfeng Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Wang, Y., Zhu, H. et al. Experimental Investigation of Hydrodynamic Characteristic of a New Rotating Stream Tray. Trans. Tianjin Univ. 25, 381–388 (2019). https://doi.org/10.1007/s12209-019-00189-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-019-00189-9

Keywords

Navigation