Skip to main content
Log in

Multiframe blind super resolution imaging based on blind deconvolution

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

As an ill-posed problem, multiframe blind super resolution imaging recovers a high resolution image from a group of low resolution images with some degradations when the information of blur kernel is limited. Note that the quality of the recovered image is influenced more by the accuracy of blur estimation than an advanced regularization. We study the traditional model of the multiframe super resolution and modify it for blind deblurring. Based on the analysis, we proposed two algorithms. The first one is based on the total variation blind deconvolution algorithm and formulated as a functional for optimization with the regularization of blur. Based on the alternating minimization and the gradient descent algorithm, the high resolution image and the unknown blur kernel are estimated iteratively. By using the median shift and add operator, the second algorithm is more robust to the outlier influence. The MSAA initialization simplifies the interpolation process to reconstruct the blurred high resolution image for blind deblurring and improves the accuracy of blind super resolution imaging. The experimental results demonstrate the superiority and accuracy of our novel algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wirawan P D, Maitre H. Multi-channel high resolution blind image restoration[C]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix, USA, 1999.

    Google Scholar 

  2. Freeman W T, Pasztor E C. Learning to estimate scenes from images[C]. In: Advances in Neural Information Processing Systems. 1998.

    Google Scholar 

  3. Sroubek F, Cristóbal G, Flusser J. Simultaneous superresolution and blind deconvolution[J]. Journal of Physics: Conference Series, 2008, 124(1): 012048.

    Google Scholar 

  4. Mudenagudi U, Singla R, Kalra P et al. Super resolution using graph-cut[C]. In: Proceedings of 7th Asian Conference on Computer Vision. Hyderabad, India, 2006.

    Google Scholar 

  5. Peleg T, Elad M. A statistical prediction model based on sparse representations for single image superresolution[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2569–2582.

    Article  MathSciNet  Google Scholar 

  6. Fattal R. Image upsampling via imposed edge statistics[J]. In: ACM Transactions on Graphics(TOG), 2007, 26(3): 95.

    Article  Google Scholar 

  7. Efrat N, Glasner D, Apartsin A et al. Accurate blur models vs. image priors in single image super-resolution[C]. In: Proceedings of IEEE International Conference on Computer Vision(ICCV). Sydney, Australia, 2013.

    Google Scholar 

  8. Wang Q, Tang X, Shum H. Patch based blind image super resolution[C]. In: Proceedings of 10th IEEE International Conference on Computer Vision(ICCV). Beijing, China, 2005.

    Google Scholar 

  9. Harmeling S, Sra S, Hirsch M et al. Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM[C]. In: Proceedings of 17th IEEE International Conference on Image Processing(ICIP). Hong Kong, China, 2010.

    Google Scholar 

  10. Levin A, Weiss Y, Durand F et al. Understanding blind deconvolution algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2354–2367.

    Article  Google Scholar 

  11. Perrone D, Favaro P. Total variation blind deconvolution: The devil is in the details[C]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus, USA, 2014.

    Google Scholar 

  12. Michaeli T, Irani M. Nonparametric blind super-resolution [C]. In: Proceedings of IEEE International Conference on Computer Vision(ICCV). Sydney, Australia, 2013.

    Google Scholar 

  13. Farsiu S, Robinson M D, Elad M et al. Fast and robust multiframe super resolution [J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327–1344.

    Article  Google Scholar 

  14. Sroubek F, Milanfar P. Robust multichannel blind deconvolution via fast alternating minimization[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1687–1700.

    Article  MathSciNet  Google Scholar 

  15. Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics(TOG), 2008, 27(3): 73.

    Google Scholar 

  16. Xu L, Jia J. Two-phase kernel estimation for robust motion deblurring[C]. In: Proceedings of Computer Vision-ECCV 2010. Heraklion, Greece, 2010.

    Google Scholar 

  17. Windows Image Acquisition[EB/OL]. https://en.wikipedia.org/wiki/Windows_Image_Acquisition, 2016-07-05.

  18. Lertrattanapanich S, Bose N K. High resolution image formation from low resolution frames using Delaunay triangulation[J]. IEEE Transactions on Image Processing, 2002, 11(12): 1427–1441.

    Article  MathSciNet  Google Scholar 

  19. Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  20. Rameshan R M, Chaudhuri S, Velmurugan R. Joint MAP estimation for blind deconvolution: When does it work? [C]. In: Proceedings of the 8th Indian Conference on Computer Vision, Graphics and Image Processing. Mumbai, India, 2012.

    Google Scholar 

  21. Thompson A M, Brown J C, Kay J W et al. A study of methods of choosing the smoothing parameter in image restoration by regularization[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, 13(4): 326–339.

    Article  Google Scholar 

  22. Eldar Y C. Generalized SURE for exponential families: Applications to regularization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 471–481.

    Article  MathSciNet  Google Scholar 

  23. Ramani S, Liu Z, Rosen J et al. Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3659–3672.

    Article  MathSciNet  Google Scholar 

  24. Hirsch M, Harmeling S, Sra S et al. Online multiframe blind deconvolution with super-resolution and saturation correction[J]. Astronomy & Astrophysics, 2011, 531: A9.

    Article  Google Scholar 

  25. Harmeling S, Hirsch M, Sra S et al. Online blind deconvolution for astronomical imaging[C]. In: Proceedings of IEEE International Conference on Computational Photography(ICCP). San Francisco, USA, 2009.

    Google Scholar 

  26. Goldstein A, Fattal R. Blur-kernel estimation from spectral irregularities[C]. In: Proceedings of Computer Vision-ECCV 2012. Florence, Italy, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yuan  (元 伟).

Additional information

Supported by the National Natural Science Foundation of China(No. 61340034), the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Zhang, L. Multiframe blind super resolution imaging based on blind deconvolution. Trans. Tianjin Univ. 22, 358–366 (2016). https://doi.org/10.1007/s12209-016-2838-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-2838-0

Keywords

Navigation