Skip to main content
Log in

Blind image deblurring via L1-regularized second-order gradient prior

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The blind image deblurring is to find the underlying true image and the blur kernel from a blurred observation. This is a well-known ill-conditional problem in image processing field. To obtain a pleasant deblurred result, additional assumptions and prior knowledge are required. Proposed in this work is a simple and efficient blind image deblurring method which utilizes L1-regularized second-order gradient prior. The inspiration for this work comes from the fact that the absolute values of the second-order gradient elements decrease with motion blur. This change is an essential feature of the motion blur process, and we demonstrate it mathematically in this paper. By enforcing the L1 norm constraint to the term involving second-order gradients and incorporating it into the traditional deblurring framework, an effective optimization scheme is explored. The half-quadratic splitting technique is adopted to handle the non-convex minimum problem. Experimental results illustrate that our algorithm outperforms the state-of-art image deblurring algorithms in both benchmark datasets and ground-truth scenes. Besides, this algorithm is simple since it does not require any heuristic edge selection steps or involves too many nonlinear operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Askari Javaran T, Hassanpour H, Abolghasemi V (2017) Local motion deblurring using an effective image prior based on both the first- and second-order gradients[J]. Machine Vision & Applications 28(3–4):1–14

    Google Scholar 

  2. Banham MR, Katsaggelos AK (1997) Digital image restoration[J]. IEEE Signal Process Mag 42(2):678–692

    Google Scholar 

  3. Bao J, Luo L, Zhang Y, et al (2021) Half quadratic splitting method combined with convolution neural network for blind image deblurring[J]. Multimed Tools Appl 80(3):3489-3504

  4. Campisi P, Egiazarian K (2017) Blind Image Deconvolution: Theory and Applications[M] (Eds.). CRC Press.

  5. Cannon M (1976) Blind deconvolution of spatially invariant image blurs with phase[J]. IEEE Transactions on Acoustic, Speech, and Signal Processing 24(1):58–63

    Article  Google Scholar 

  6. Cao X, Ren W, Zuo W, et al (2015) Scene text deblurring using text-specific multiscale dictionaries[J]. IEEE Transactions on Image Processing 24(4):1302-1314

  7. Chakrabarti A. (2016) A neural approach to blind motion deblurring[C]. Proceedings of the European Conference on Computer Vision. Springer, Cham, 221–235

  8. Chan T, Wong C (1998) Total variation blind deconvolution. IEEE Trans Image Process 7(3):270–375

    Article  Google Scholar 

  9. Chen Z, Fang F, Xu Y, et al (2016) A second-order approach for blind motion deblurring by normalized regularization[C]. Pacific Rim Conference on Multimedia. Springer, Cham, p 296-305

  10. Chen L, Fang F, Wang T, et al (2019) Blind image deblurring with local maximum gradient prior[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition p 1742-1750

  11. Cho S, Lee S (2010) Fast motion deblurring. ACM Trans Graph 28(5):145

    Google Scholar 

  12. Cho S, Wang J, Lee S (2011) Handling outliers in non-blind image deconvolution[C]. IEEE International Conference on Computer Vision p 495–502

  13. Cho H, Wang J, Lee S (2012) Text image deblurring using text-specific properties[C]. European Conference on Computer Vision. Springer, Berlin, Heidelberg p 524–537

  14. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single photograph[J]. ACM Trans Graph 25(3):787–794

    Article  Google Scholar 

  15.  Hirsch M, Schuler CJ, Harmeling S, et al (2011) Fast removal of non-uniform camera shake[C]. IEEE International Conference on Computer Vision p 463–470

  16. Hu Z, Cho S, Wang J, et al (2014) Deblurring low-light images with lieaks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 3382–3389

  17. Hu Z, Yuan L, Lin S, et al (2016) Image deblurring using smartphone inertial sensors[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 1855–1864

  18. Jia J (2007) Single image motion deblurring using transparency. ,“IEEE Conference on Computer Vision and Pattern Recognition, p 1–8

  19. Joshi N, Szeliski R, Kriegman DJ (2008) PSF estimation using sharp edge prediction[C]. IEEE Conference on Computer Vision and Pattern Recognition p 1–8

  20. Köhler R, Hirsch M, Mohler B, et al (2012) Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database[C]. European conference on computer vision, Springer, Berlin, Heidelberg p 27–40

  21. Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-Laplacian priors[J]. Advances in neural information processing systems p 22

  22. Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. IEEE Conference on Computer Vision and Pattern Recognition p 233–240.

  23. Lai W S, Huang J B, Hu Z, et al. (2016) A comparative study for single image blind deblurring[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 1701–1709

  24. Lee H, Jung C, Kim C (2019) Blind deblurring of text images using a text-specific hybrid dictionary[J]. IEEE Transactions on Image Processing 29:710–723

  25. Li TH, Lii KS (2002) A joint estimation approach for two-tone image deblurring by blind deconvolution[J]. IEEE Transactions on Image Processing 11(8):847–858

  26. Levin A, Weiss Y, Durand F, Freeman WT (2009) Understanding and evaluating blind deconvolution algorithms[C]. IEEE Conference on Computer Vision and Pattern Recognition p 4003–4011

  27. Levin A, Weiss Y et al (2011) Efficient marginal likelihood optimization in blind deconvolution[C]. IEEE Conference on Computer Vision and Pattern Recognition p 2657–2664

  28. Li T, Lii K (2002) A joint estimation aproach for two-tone image deblurring by blind deconvolution. ACM Trans Graph p:847–858

  29. Li L, Pan J, Lai W, Gao C, Sang N, Yang M (2019) Blind image deblurring via deep discriminative priors. Int J Comput Vis 127(8):1025–1043

    Article  Google Scholar 

  30. Lucy LB (1974) An iterative technique for the rectification of observed distributions[J]. J of Astronomy 79(6):745

    Article  Google Scholar 

  31. Lucy LB (1997) An iterative technique for the rectification of observed distributions[J]. Astron J 79(8):745–754

    Google Scholar 

  32. Michaeli T, Irani M (2014) Blind deblurring using internal patch recurrence. Eur Conf Comput Vis:783–798

  33. Nah S, Kim TH, Lee KM (Jul. 2017) Deep multi-scale convolutional neural network for dynamic scene deblurring. IEEE Conference on Computer Vision and Pattern Recognition, p:257–265

  34. Pan J, Hu Z, Su Z (2014) Deblurring face images with exemplars. Eur Conf Comput Vis:47–62

  35. Pan J, Hu Z, Su Z (2016) L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans Pattern Anal Mach Intell 39(2):342–355

    Article  Google Scholar 

  36. Pan J, Sun D, Pfister H, Yang MH (2016) Blind image deblurring using dark channel prior. IEEE Conf Computer Vision Pattern Recognition:1628–1636

  37. Ren W, Cao X, Pan J (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25(7):3426–3437

    Article  MathSciNet  Google Scholar 

  38. Ren D, Zhang K, Wang Q, et al (2020) Neural blind deconvolution using deep priors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition p 3341-3350

  39. Schuler C, Hirsch M, Harmeling S (2016) Learning to deblur. IEEE Trans Pattern Anal Mach Intell 38(7):1439–1451

    Article  Google Scholar 

  40. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):73

    Article  Google Scholar 

  41. Shao W, Lin Y, Liu Y, Wang L, Li H (2020) Gradient-based discriminative modeling for blind image deblurring. Neurocomputing 413:305–327

    Article  Google Scholar 

  42. Stockham G, Cannon M (1975) Blind deconvolution through digital signal processing. Proc IEEE 63(4):678–692

    Article  Google Scholar 

  43. Sun L, Cho S, Wang J, et al (2013) Edge-based blur kernel estimation using patch priors[C]. IEEE International Conference on Computational Photography p 1-8

  44. Sun J, Cao W, Xu Z, et al (2015) Learning a convolutional neural network for non-uniform motion blur removal[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 769–777

  45. Tao X, Gao H, Shen X, et al (2018) Scale-recurrent network for deep image deblurring[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 8174-8182

  46. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment[C]. IEEE The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers 2:1398-1402

  47. Wang Z, Bovik A, Sheikh H et al (2014) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  48. Whyte O, Sivic J, Zisserman A (2014) Deblurring shaken and partially saturated images[J]. Int J Comput Vision 110(2):185-201

  49. Whyte O, Sivic J, Zisserman A, Ponce J (2012) Non-uniform deblurring for shaken images. Int J Comput Vis 98(2):168–186

    Article  MathSciNet  Google Scholar 

  50. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series[J]. MIT press, Cambridge, MA

    Book  Google Scholar 

  51. Xu L, Jia J (2010) Two-phase kernel estimation for robust motion Deblurring[J]. IEEE Int Conf Computer Vision:157–170

  52. Xu L, Lu C, Xu Y, et al (2011) Image smoothing via L 0 gradient minimization[C]. Proceedings of the 2011 SIGGRAPH Asia conference p 1-12

  53. Xu L, Zheng S, Jia J (2013) Unnatural l0 sparse representation for natural image deblurring[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 1107–1114

  54. Yan R, Shao L (2016) Blind image blur estimation via deep learning. IEEE Trans Image Process 25(4):1910–1921

    MathSciNet  MATH  Google Scholar 

  55. Yan Y, Ren W, Guo Y, et al (2017) Image deblurring via extreme channels prior[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition p 4003-4011

  56. Yasarla R, Perazzi F, Patel V (2020) Deblurring face images using uncertainty guided multi-stream semantic networks. IEEE Trans Image Process 29:6251–6263

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their helpful comments and suggestions which greatly improve the quality of the paper. This work was supported by the National Natural Science Foundation of China under Grant 62172135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Tan.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Tan, J., Zhang, L. et al. Blind image deblurring via L1-regularized second-order gradient prior. Multimed Tools Appl 81, 39121–39144 (2022). https://doi.org/10.1007/s11042-022-13010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13010-y

Keywords

Navigation