Skip to main content
Log in

Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Mishra and Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50 (1–2) (2005) 980–1023.

    Google Scholar 

  2. K. Elangovan and V. Balasubramanian, Influence of pin profile and rotational speed of the tool on formation of friction stir processing zone in AA2219 aluminium alloy, Mater. Sci. Eng. A, 459 (1–2) (2007) 7–18.

    Article  Google Scholar 

  3. S. K. Lee, W. S. Chang, W. S. Yoo and S. J. Na, A study on a vision sensor based laser welding system for bellows, J. Manuf. Syst., 19 (4) (2000) 249–255.

    Article  Google Scholar 

  4. S. K. Lee and S. J. Na, A study on automatic seam tracking in pulsed laser edge welding by using a vision sensor without an auxiliary light source, J. Manuf. Syst., 21 (4) (2002) 302–315.

    Article  Google Scholar 

  5. D. C. Lim and D. G. Gweon, In-process joint strength estimation in pulsed laser spot welding using artificial neural networks, J. Manuf. Syst., 1 (1) (1999) 31–42.

    Article  Google Scholar 

  6. X. Gao, R. Zhen, Z. Xiao and K. Seiji, Modeling for detecting micro-gap weld based on magneto-optical imaging, J. Manuf. Syst., 37 (2015) 193–200.

    Article  Google Scholar 

  7. Z. Luo, J. S. Dai, C. Wang, F. Wang, Y. Tian and M. Zhao, Predictive seam tracking with iteratively learned feed forward compensation for high-precision robotic laser welding, J. Manuf. Syst., 31 (2012) 2–7.

    Article  Google Scholar 

  8. Z. Yanxi, G. Xiandong and K. Seiji, Weld appearance with BP neural network improved by genetic algorithm during disk laser welding, J. Manuf. Syst., 34 (2015) 53–59.

    Article  Google Scholar 

  9. K. S. Arora, S. Pandey, M. Schaper and R. Kumar, Effects of process parameters on friction stir welding of aluminium alloy 2219-T87, Int. J. Adv. Manuf. Technol., 50 (9–12) (2010) 941–952.

    Article  Google Scholar 

  10. P. Cavaliere, G. Campanile, F. Panella and A. Squillace, Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding, J. Mater. Process. Technol., 180 (2006) 263–270.

    Article  Google Scholar 

  11. S. Subramaniam, S. Narayan and S. D. Ashok, Acoustic emission based monitoring approach for friction stir welding of aluminum alloy AA6063-T6 with different tool pin profiles, Proc. IMechE part B: J Eng. Manuf., 227 (3) (2013) 407–416.

    Article  Google Scholar 

  12. P. Fleming, D. Lammlein, D. Wilkes, T. Bloodworth, G. Cook, T. Leinert and T. Prater, In-process gap detection in friction stir welding, Sensor Review, 28 (1) (2008) 62–67.

    Article  Google Scholar 

  13. E. Boldsaikhan, E. M. Corwin, A. M. Logar and W. J. Arbegast, The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding, Appl. Soft Comput, 11 (8) (2011) 4839–4846.

    Article  Google Scholar 

  14. C. Chen, R. Kovacevic and D. Jandgric, Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum, Int. J. Mach. Tools Manuf., 43 (13) (2003) 1383–1390.

    Article  Google Scholar 

  15. M. J. Katz, Fractals and the analysis of waveforms, Comput. Biol. Med., 18 (3) (1988) 145–156.

    Article  Google Scholar 

  16. R. Esteller, G. Vachtsevanos, J. Echauz and B. Litt, A comparison of waveform fractal dimension algorithms, IEEE Trans. Circuits Syst. I, 48 (2) (2001) 177–183.

    Article  Google Scholar 

  17. L. Zhen, An. Dong, P. Shan and Z. Xing, Analysis of acoustic emission signal by fractal theory in aluminum alloy spot welding, Trans. Tianjin University, 13 (3) (2007) 186–190.

    Google Scholar 

  18. A. P. Vieira, E. P. Moura, L. L. Goncalves and J. M. A. Rebello, Characterization of welding defects by fractal analysis of ultrasonic signals, Chaos, Solitons Fractals, 38 (3) (2008) 748–754.

    Article  Google Scholar 

  19. E. A. Krivonosova and A. I. Gorchakov, Fractal analysis of the fatigue fracture surface of metal of welded joints, Weld Int., 27 (9) (2013) 690–693.

    Article  Google Scholar 

  20. H. Zhanfeng, W. Pei, X. Jing and H. Jingyu, Application of fractal theory in examination of resistance spot welding quality, Proc. International Conference on Advanced Technology of Design and Manufacture, Beijing, China(2010) 422–424.

    Chapter  Google Scholar 

  21. B. Das, S. Bag and S. Pal, Defect detection in friction stir welding process through characterization of signals by fractal dimension, Manuf. Let., 7 (2016) 6–10.

    Article  Google Scholar 

  22. T. Higuchi, Approach to an irregular time series on the basis of fractal theory, Physica D, 31 (2) (1988) 277–283.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Kupkova, M. Kupka, E. Rudnayova and J. Dusza, On the use of fractal geometry methods for the wear process characterization, Wear, 258 (2005) 1462–1465.

    Article  Google Scholar 

  24. T. Sakthivel, G. S. Sengar and J. Mukhopadhyay, Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum, Int. J. Adv. Manuf. Technol., 43 (5–6) (2009) 468–473.

    Article  Google Scholar 

  25. J. Q. Li and H. J. Liu, Effects of tool rotation speed on microstructures and mechanical properties of AA2219-T6 welded by the external non-rotational shoulder assisted friction stir welding, Mater. Des., 43 (2013) 299–306.

    Article  Google Scholar 

  26. C. Sharma, D. K. Dwivedy and P. Kumar, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy, Mater. Des., 36 (2012) 379–390.

    Article  Google Scholar 

  27. Y. Yang, P. Kalya, R. G. Landers and K. Krishnamurthy, Automatic gap detection in friction stir butt welding operations, Int. J. Mach. Tools Manuf., 48 (10) (2008) 1161–1169.

    Article  Google Scholar 

  28. S. Pal, S. K. Pal and A. K. Samantaray, Prediction of the quality of pulsed metal inert gas welding using statistical parameters of arc signals inartificial neural network, Int. J. Comp. Integr. Manuf., 23 (5) (2010) 453–465.

    Article  Google Scholar 

  29. B. Sick, On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research, Mech. Syst. Sig. Process, 16 (4) (2002) 487–546.

    Article  Google Scholar 

  30. B. S. Raghavendra and D. N. Dutt, Computing fractal dimension of signals using multi resolution box counting method, World Academy of Science, Engineering and Technology, 4 (1) (2010) 1086–1101.

    Google Scholar 

  31. P. Maragos and F. K. Sun, Measuring the fractal dimension of signals: Morphological covers and iterative optimization, IEEE Trans. Sig. Process, 41 (1) (1993) 108–121.

    Article  MATH  Google Scholar 

  32. A. Heidarzadeh, T. Saeid, H. Khodaverdizadeh, A. Mahmoudi and E. Nazari, Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints, Mettal. Mater. Trans B, 44B (2013) 175–183.

    Article  Google Scholar 

  33. A. Heidarzadeh and T. Saeid, Prediction of mechanical properties in friction stir welds of pure copper, Mater. Des., 52 (2013) 1077–1087.

    Article  Google Scholar 

  34. A. Heidarzadeh, H. Khodaverdizadeh, A. Mahmoudi and E. Nazari, Tensile behaviour of friction stir welded AA6061-T4 aluminum alloy joints, Mater. Des., 37 (2012) 166–173.

    Article  Google Scholar 

  35. A. Heidarzadeh, R. V. Barenji, M. Esmaily and A. R. Ilkhichi, Tensile properties of friction stir welds of AA7020 aluminum alloy, Trans. Indian Inst. Met., 68 (2015) 757–767.

    Article  Google Scholar 

  36. A. Rahimzadeh, R. Soufi, G. Hussain, R. V. Barenji and A. Heidarzadeh, Establishing mathematical model to predict grain size and hardness of friction stir welded AA7020 aluminum alloy joints, Mettal. Mater. Trans. B, 46B (2015) 357–365.

    Article  Google Scholar 

  37. A. Heidarzadeh, M. Jabbari and M. Esmaily, Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model, Int. J. Adv. Manuf. Technol., 77 (2015) 1819–1829.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Bag.

Additional information

Recommended by Associate Editor Young Whan Park

Bipul Das is a Research Scholar in Mechanical Engineering, IIT Guwahati. His research topic is related to monitoring of friction stir welding process.

Swarup Bag is an Assistant Professor of Mechanical Engineering, IIT Guwahati. His research interest includes fusion welding processes, microjoining technologies, heat transfer and material flow in fusion welding, residual stress and distortion, recrystallization in hot metal forming process, optimization in manufacturing processes.

Sukhomay Pal is an Associate Professor of Mechanical Engineering, IIT Guwahati. His research interests include welding process monitoring and control, modeling and optimization of manufacturing processes using soft-computing techniques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Bag, S. & Pal, S. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory. J Mech Sci Technol 31, 2459–2465 (2017). https://doi.org/10.1007/s12206-017-0444-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0444-2

Keywords

Navigation