Skip to main content
Log in

Risky Ground Prediction ahead of Mechanized Tunnel Face using Electrical Methods: Laboratory Tests

  • Tunnel Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

An accurate determination of the ground condition ahead of a tunnel face is key to stable excavation of tunnels using a Tunnel Boring Machine (TBM). This study verifies the effectiveness of using the Induced Polarization (IP) method along with electrical resistivity for identifying hazardous ground conditions ahead of a tunnel face. The advancement of the TBM toward a fault zone, seawater bearing zone, soil-to-rock transition zone, and mixed-ground zone is artificially modeled in laboratory-scale experiments. The IP and resistivity are assumed to be measured at the tunnel face, whenever the excavation is stopped to assemble one ring of a segmental lining. The measured IP showed completely different trends from the measured resistivity and varies with the type of hazardous zone. As the TBM approached the fault zone, transition zone, and mixed ground, the IP values were observed to be constant, increasing, and fluctuating, respectively. Therefore, a more reliable prediction of the ground condition ahead of a tunnel face can be achieved by using the IP and resistivity methods together. A table that can be used to predict the ground conditions based on the afore-mentioned methods is presented in this paper for use in mechanized tunneling job sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie, G. E. (1942). “The electrical resistivity log as an aid in determining some reservoir characteristics.” Trans. Am. Inst. Min. Metall. Eng., Society of Petroleum Engineers, Vol. 146, No. 1, pp. 54–62, DOI: 10.2118/942054-G.

    Google Scholar 

  • Chang, S. H., Bae, G. J., Jeon, S., Yu, Y. I., and Oh, S. J. (2006). “Risk management in a TBM Tunnel.” 13th Tunnel Committee Special Conference, KSCE, Seoul, Korea, pp. 91–114 (in Korean).

    Google Scholar 

  • Cho, G. C., Choi, J. S., Lee, G. H., and Lee, J. K. (2005). “Prediction of ground-condition ahead of tunnel face using electric resistivityanalytical study.” Proc. of Int. World Tunnel Cong., AITES-ITA, Istanbul, Turkey, pp. 1187–1194.

    Google Scholar 

  • Choi, S., Kim, H. S., and Kim, J. S. (2008). “IP characteristics of sand and silt for investigating the alluvium aquifer.” J. Engng. Geol., Vol. 18, No. 4, pp. 423–431 (in Korean).

    Google Scholar 

  • Dickmann, T. and Sander, B. K. (1996). “Drivage-concurrent Tunnel Seismic Prediction (TSP): Results from Vereina north tunnel megaproject and Piora pilot gallery.” Geomechanik-Kolloquium, Vol. 14, No. 6, pp. 406–411.

    Google Scholar 

  • Grodner, M. (2001). “Delineation of rockburst fractures with ground penetrating radar in the Witwatersrand basin, South Africa.” Int. J. Rock Mech. Min. Sci., Vol. 38, No. 6, pp. 885–891, DOI: 10.1016/S1365-1609(01)00054-5

    Article  Google Scholar 

  • Hamdia, K. M., Lahmer, T., Nguyen-Thoi, T. and Rabczuk, T. (2015). “Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS.” Computational Materials Science, Vol. 102, pp. 304–313, DOI: 10.1016/j.commatsci.2015.02.045

    Article  Google Scholar 

  • James, A. and Richard, P. (2011). “Inexpensive geophysical instruments supporting groundwater exploration in developing nations.” J. Water Resour. Prot., Vol. 3, No. 10, pp. 768–780, DOI: 10.4236/jwarp.2011.310087.

    Article  Google Scholar 

  • Kaus, A. and Boening, W. (2008). “BEAM-geoelectrical ahead monitoring for TBM-drives.” Geomech. Tunn., Vol. 1, No. 5, pp. 442–449, DOI: 10.1002/geot.200800048.

    Article  Google Scholar 

  • McDowell, P. W., Barker, R. D., Butcher, A. P., Culshaw, M. G., Jackson, P. D., McCann, D. M., Skipp, B. O., Matthews, S. L., and Arthur, J. C. R. (2002). Geophysics in engineering investigations, CIRIA, London, UK, pp. 61–185.

    Google Scholar 

  • Morrow, C., Lockner, D. A., and Hickman, S. (2015). “Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD.” J. of Geoph. Resear., Vol. 120, No. 12, pp. 8240–8258, DOI: 10.1002/2015JB012214.

    Article  Google Scholar 

  • Park, J., Lee, K. H., Kim, B. K., Choi, H., and Lee, I. M. (2017a). “Predicting anomalous zone ahead of tunnel face utilizing electrical resistivity: II. Field tests.” Tunn. Undergr. Space Technol., Vol. 68, pp. 1–10, DOI: 10.1016/j.tust.2017.05.017.

    Article  Google Scholar 

  • Park, J., Lee, K. H., Park, J., Choi, H., and Lee, I. M. (2016). “Predicting anomalous zone ahead of tunnel face utilizing electrical resistivity: I. Algorithm and measuring system development.” Tunn. Undergr. Space Technol., Vol. 60, pp. 141–150, DOI: 10.1016/j.tust.2016.08.007.

    Article  Google Scholar 

  • Park, J., Lee, K. H., Seo, H., Ryu, J., and Lee, I. M. (2017b). “Role of induced electrical polarization to identify soft ground/fractured rock conditions.” J. Appl. Geoph., Vol. 137, pp. 63–72, DOI: 10.1016/j.jappgeo.2016.12.017.

    Article  Google Scholar 

  • Reynolds, J. M. (1997). An introduction to applied and environmental geophysics, John Wiley & Sons, New York, N. Y., pp. 289–348.

    Google Scholar 

  • Robert, A. (2014). Forward probing ahead of tunnel boring machines, AFTES recommendations GT24R2A1, French Tunnelling and Underground Space Association, Paris, pp. 132–169.

    Google Scholar 

  • Schaeffer, K. and Mooney, M. A. (2016). “Examining the influence of TBM-ground interaction on electrical resistivity imaging ahead of the TBM.” Tunn. Undergr. Space Technol., Vol. 58, pp. 82–98, DOI: 10.1016/j.tust.2016.04.003.

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P., and Sheriff, R. E. (1990). Applied geophysics, second ed., Cambridge University Press, New York, N. Y., pp. 578–609.

    Book  Google Scholar 

  • Titov, K., Kemna, A., Tarasov, A., and Vereecken, H. (2004). “Induced polarization of unsaturated sands determined through time domain measurements.” Vadose Zone Journal, Vol. 3, No. 4, pp. 1160–1168, DOI: 10.2113/3.4.1160.

    Article  Google Scholar 

  • Toth, A., Gong, Q., and Zhao, J. (2013). “Case studies of TBM tunnelling performance in rock-soil interface mixed ground.” Tunn. Undergr. Space Technol., Vol. 38, pp. 140–150, DOI: 10.1016/j.tust.2013.06.001.

    Article  Google Scholar 

  • Van Nostrand, R. G. and Cook, K. L. (1966). Interpretation of resistivity data, U.S. Government Printing Office, Alexandria, Washington, USA, pp. 45–55.

    Google Scholar 

  • Vlasov, S. N., Makovsky, L. V., and Merkin, V. E. (2001). Accidents in transportation and subway tunnels: Construction to operation, Elex-KM Publ. Ltd, Moscow, Russia, pp. 17–87.

    Google Scholar 

  • Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T., and Rabczuk, T. (2016). “A software framework for probabilistic sensitivity analysis for computationally expensive models.” Advances in Engineering Software, Vol. 100, pp. 19–31, DOI: 10.1016/j.advengsoft.2016.06.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Mo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Ryu, J., Choi, H. et al. Risky Ground Prediction ahead of Mechanized Tunnel Face using Electrical Methods: Laboratory Tests. KSCE J Civ Eng 22, 3663–3675 (2018). https://doi.org/10.1007/s12205-018-1357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1357-z

Keywords

Navigation