Skip to main content
Log in

Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This paper presents a method for compensating the force ripple in permanent magnet linear synchronous motors (PMLSMs) by adopting a composite feedforward compensation scheme. Firstly, the vector control system of PMLSMs is described, and various force disturbances influencing the electromagnetic thrust are analyzed. As a result, the mathematical model of the whole system considering the force ripple is established. Then, a novel composite feedforward compensation scheme is proposed, which consists of a recursive least squares (RLS) parameter identification component and two feedforward compensation loops corresponding to the reference position trajectory and the force ripple, respectively. Finally, the effectiveness and advantages of the proposed composite feedforward compensation are demonstrated by simulation. The main incentive of this paper is the combination with the composite feedforward compensation loop corresponding to the reference position trajectory to improve the compensation effect of force ripple in PMLSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YUAN F, WANG X Y, TAO J F, et al. Research on vane end face of cam-rotor vane servo motor based on disturbing torque [J]. Journal of Shanghai Jiao Tong University (Science), 2016, 21(6): 641–647.

    Article  Google Scholar 

  2. PEI R L, ZENG L B, CHEN X, et al. Studies of high-efficiency electrical steels used in electric vehicle motors [J]. Journal of Shanghai Jiao Tong University (Science), 2012, 17(3): 319–322.

    Article  Google Scholar 

  3. CHEN S Y, LIU T S. Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural network [J]. IET Electric Power Applications, 2017, 11(6): 1043–1054.

    Article  Google Scholar 

  4. YANG C Y, MA T T, CHE Z Y, et al. An adaptivegain sliding mode observer for sensorless control of permanent magnet linear synchronous motors [J]. IEEE Access, 2018, 6: 3469–3478.

    Article  Google Scholar 

  5. HOBURG J F. Modeling maglev passenger compartment static magnetic fields from linear Halbach permanent-magnet arrays [J]. IEEE Transactions on Magnetics, 2004, 40(1): 59–64.

    Article  Google Scholar 

  6. RONG Z L, HUANG Q. A new PMSM speed modulation system with sliding mode based on active disturbance-rejection control [J]. Journal of Central South University, 2016, 23(6): 1406–1415.

    Article  Google Scholar 

  7. XUE Y B, YAO Z Q, CHENG D, et al. Coast-down modeling of canned motor based on torque behavior study [J]. Journal of Shanghai Jiao Tong University (Science), 2015, 20(4): 420–426.

    Article  Google Scholar 

  8. ZHANG Z J, ZHOU H B, DUAN J A, et al. Design and analysis of a new ring winding structure for permanent magnet linear synchronous motors [J]. IEEE Transactions on Plasma Science, 2016, 44(12): 3311–3321.

    Article  Google Scholar 

  9. WANG M Y, LI L Y, PAN D H. Detent force compensation for PMLSM systems based on structural design and control method combination [J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6845–6854.

    Article  Google Scholar 

  10. CHUNG S U, KIM J M, WOO B C, et al. Development of doubly salient permanent magnet linear synchronous motor for general-purpose automation applications [J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(12): 2075–2080.

    Article  Google Scholar 

  11. BARCARO M, BIANCHI N, MAGNUSSEN F. Remarks on torque estimation accuracy in fractional-slot permanent-magnet motors [J]. IEEE Transactions on Industrial Electronics, 2012, 59(6): 2565–2572.

    Article  Google Scholar 

  12. CHUNG S U, KIM J M. Double-sided iron-core PMLSM mover teeth arrangement design for reduction of detent force and speed ripple [J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3000–3008.

    Article  Google Scholar 

  13. BANG D J, HWANG S H. Wide air-gap control for multi-module permanent magnet linear synchronous motors without magnetic levitation windings [J]. Journal of Power Electronics, 2016, 16(5): 1773–1780.

    Article  Google Scholar 

  14. CHO K, NAM K. Periodic learning disturbance observer based precision motion control in PMLSM motion systems considering long-term instability problem [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(9): 1101–1112.

    Article  Google Scholar 

  15. TAN K K, LEE T H, DOU H F, et al. Precision motion control with disturbance observer for pulsewidth-modulated-driven permanent-magnet linear motors [J]. IEEE Transactions on Magnetics, 2003, 39(3): 1813–1818.

    Article  Google Scholar 

  16. CHEN S L, TAN K K, HUANG S N. Modeling and compensation of ripples and friction in permanentmagnet linear motor using a hysteretic relay [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 586–594.

    Article  Google Scholar 

  17. TAN K K, HUANG S N, LEE T H. Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors [J]. IEEE Transactions on Magnetics, 2002, 38(1): 221–228.

    Article  Google Scholar 

  18. TAN K K, LEE T H, DOU H, et al. Force ripple suppression in iron-core permanent magnet linear motors using an adaptive dither [J]. Journal of the Franklin Institute, 2004, 341(4): 375–390.

    Article  Google Scholar 

  19. BARATAM A, KARLAPUDY A M, MUNAGALA S. Implementation of thrust ripple reduction for a permanent magnet linear synchronous motor using an adaptive feed forward controller [J]. Journal of Power Electronics, 2014, 14(4): 687–694.

    Article  Google Scholar 

  20. ZHANG D L, CHEN Y P, AI W, et al. Force ripple suppression technology for linear motors based on back propagation neural network [J]. Chinese Journal of Mechanical Engineering, 2008, 21(2): 13–16.

    Article  Google Scholar 

  21. LU S W, TANG X Q, SONG B, et al. Identification and compensation of force ripple in PMSLM using a JITL technique [J]. Asian Journal of Control, 2015, 17(5): 1559–1568.

    Article  Google Scholar 

  22. CHE Z Y, CHEN J Q, YANG C Y, et al. Permanent magnet linear synchronous motor control system based on sliding mode variable structure [J]. Electric Machines & Control Application, 2017, 44(10): 8–12 (in Chinese).

    Google Scholar 

  23. BASCETTA L, ROCCO P, MAGNANI G. Force ripple compensation in linear motors based on closed-loop position-dependent identification [J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(3): 349–359.

    Article  Google Scholar 

  24. ZHANG D L, CHEN Y P, AI W, et al. Precision motion control of permanent magnet linear motors [J]. International Journal of Advanced Manufacturing Technology, 2007, 35(3/4): 301–308.

    Article  Google Scholar 

  25. ZHAO S, TAN K K. Adaptive feedforward compensation of force ripples in linear motors [J]. Control Engineering Practice, 2005, 13(9): 1081–1092.

    Article  Google Scholar 

  26. CHEN P, ZHENG J. PMLSM servo system design and implement base on DSP28335 [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013(1): 80–83 (in Chinese).

    Google Scholar 

  27. SON Y I, KIM I H, CHOI D S, et al. Robust cascade control of electric motor drives using dual reducedorder PI observer [J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3672–3682.

    Google Scholar 

  28. TAN K K, HUANG S N, DOU H F, et al. Adaptive robust motion control for precise trajectory tracking applications [J]. ISA Transactions, 2001, 40(1): 57–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Yang  (杨春雨).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 61374043 and 61603392), and the China Postdoctoral Science Foundation Funded Project (Nos. 2013M530278 and 2014T70558)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Che, Z. & Zhou, L. Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors. J. Shanghai Jiaotong Univ. (Sci.) 24, 782–788 (2019). https://doi.org/10.1007/s12204-019-2111-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-019-2111-5

Key words

CLC number

Document code

Navigation