Skip to main content

Advertisement

Log in

Angiotensin II Increases Oxidative Stress and Inflammation in Female, But Not Male, Endothelial Cells

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Women are at elevated risk for certain cardiovascular diseases, including pulmonary arterial hypertension, Alzheimer’s disease, and vascular complications of diabetes. Angiotensin II (AngII), a circulating stress hormone, is elevated in cardiovascular disease; however, our knowledge of sex differences in the vascular effects of AngII are limited. We therefore analyzed sex differences in human endothelial cell response to AngII treatment.

Methods

Male and female endothelial cells were treated with AngII for 24 h and analyzed by RNA sequencing. We then used endothelial and mesenchymal markers, inflammation assays, and oxidative stress indicators to measure female and male endothelial cell functional changes in response to AngII.

Results

Our data show that female and male endothelial cells are transcriptomically distinct. Female endothelial cells treated with AngII had widespread gene expression changes related to inflammatory and oxidative stress pathways, while male endothelial cells had few gene expression changes. While both female and male endothelial cells maintained their endothelial phenotype with AngII treatment, female endothelial cells showed increased release of the inflammatory cytokine interleukin-6 and increased white blood cell adhesion following AngII treatment concurrent with a second inflammatory cytokine. Additionally, female endothelial cells had elevated reactive oxygen species production compared to male endothelial cells after AngII treatment, which may be partially due to nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) escape from X-chromosome inactivation.

Conclusions

These data suggest that endothelial cells have sexually dimorphic responses to AngII, which could contribute to increased prevalence of some cardiovascular diseases in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All RNA sequencing data is publicly available under GSE211978.

Abbreviations

SORCS2:

Sortilin related VPS10 domain containing receptor 2

CCR7:

Chemokine (C–C motif) receptor 7

TPM3P7:

Tropomycin 3 psuedogene 7

SIM1:

Single-minded homolog 1

IL-6:

Interleukin-6

TGF-β2:

Transforming growth factor beta 2

LSS:

Lanosterol synthase

DHX16:

DEAH-box helicase 16

WASH8P:

WAS protein family homolog 8, pseudogene

CDNF:

Cerebral dopamine neurotrophic factor

GTF2H2:

General transcription factor IIH subunit II

RRN3:

RNA polymerase I transcription factor

GBA:

Glucosylceramidase beta 1

NDUFC2:

NADH:Ubiquinone oxidoreductase subunit C2

NDUFA1:

NADH:Ubiquinone oxidoreductase subunit A1

UQCR10:

Ubiquinol-cytochrome C reductase, complex III, subunit X

UQCRQ:

Ubiquinol-cytochrome C reductase, complex III, subunit VII

COX6A1:

Cytochrome C oxidase subunit 6A1

COX7C:

Cytochrome C oxidase subunit 7C

COX17:

Cytochrome C oxidase copper chaperone

ATP5F1E:

ATP synthase F1 subunit epsilon

ATP5ME:

ATP synthase membrane subunit E

CYBB:

Cytochrome B-245 beta chain

NOX2:

NADPH oxidase 2

αSMA:

Alpha smooth muscle actin

TNFα:

Tumor necrosis factor alpha

ARID5A:

AT-Rich interaction domain 5A

ZC3H12A:

Reagenase-1

References

  1. Hadi, H. A. R., C. S. Carr, and J. AlSuwaidi. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 1:183–198, 2005.

    Google Scholar 

  2. McGoon, M. D., R. L. Benza, P. Escribano-Subias, X. Jiang, D. P. Miller, A. J. Peacock, J. Pepke-Zaba, T. Pulido, S. Rich, S. Rosenkranz, S. Suissa, and M. Humbert. Pulmonary arterial hypertension: Epidemiology and registries. J. Am. Coll. Cardiol. 62:D51–D59, 2013.

    Article  Google Scholar 

  3. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dementia. 15(3):321–387, 2022.

    Google Scholar 

  4. de Ritter, R., M. de Jong, R. C. Vos, C. J. H. van der Kallen, S. J. S. Sep, M. Woodward, C. D. A. Stehouwer, M. Lp, and S. A. E. Bots. Sex differences in the risk of vascular disease associated with diabetes. Biol. Sex Differ. 11:1–11, 2020.

    Article  Google Scholar 

  5. Hartman, R. J. G., D. M. C. Kapteijn, S. Haitjema, M. N. Bekker, M. Mokry, G. Pasterkamp, M. Civelek, and H. M. den Ruijter. Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. Sci. Rep. 10:1–12, 2020.

    Article  Google Scholar 

  6. Carrel, L., and H. F. Willard. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 434:400–404, 2005.

    Article  Google Scholar 

  7. Zhang, Y., A. Castillo-Morales, M. Jiang, Y. Zhu, L. Hu, A. O. Urrutia, X. Kong, and L. D. Hurst. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol. Biol. Evol. 30:2588–2601, 2013.

    Article  Google Scholar 

  8. Lorenz, M., J. Koschate, K. Kaufmann, C. Kreye, M. Mertens, W. M. Kuebler, G. Baumann, G. Gossing, A. Marki, A. Zakrzewicz, C. Miéville, A. Benn, D. Horbelt, P. R. Wratil, K. Stangl, and V. Stangl. Does cellular sex matter? Dimorphic transcriptional differences between female and male endothelial cells. Atherosclerosis. 240:61–72, 2015.

    Article  Google Scholar 

  9. Lorenz, M., B. Blaschke, A. Benn, E. Hammer, E. Witt, J. Kirwan, R. Fritsche-Guenther, Y. Gloaguen, C. Bartsch, A. Vietzke, F. Kramer, K. Kappert, P. Brunner, H. G. Nguyen, H. Dreger, K. Stangl, P. Knaus, and V. Stangl. Sex-specific metabolic and functional differences in human umbilical vein endothelial cells from twin pairs. Atherosclerosis. 291:99–106, 2019.

    Article  Google Scholar 

  10. Addis, R., I. Campesi, M. Fois, G. Capobianco, S. Dessole, G. Fenu, A. Montella, M. G. Cattaneo, L. M. Vicentini, and F. Franconi. Human umbilical endothelial cells (HUVECs) have a sex: Characterisation of the phenotype of male and female cells. Biol. Sex Differ. 5:1–12, 2014.

    Article  Google Scholar 

  11. James, B. D., and J. B. Allen. Sex-specific response to combinations of shear stress and substrate stiffness by endothelial cells in vitro. Adv. Healthc. Mater. 10:2100735, 2021.

    Article  Google Scholar 

  12. AbdAlla, S., A. el Hakim, A. Abdelbaset, Y. Elfaramawy, and U. Quitterer. Inhibition of ACE retards tau hyperphosphorylation and signs of neuronal degeneration in aged rats subjected to chronic mild stress. Biomed. Res. Int. 2015:917156, 2015.

    Article  Google Scholar 

  13. Choi, H., T. L. Leto, L. Hunyady, K. J. Catt, S. B. Yun, and G. R. Sue. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J. Biol. Chem. 283:255–267, 2008.

    Article  Google Scholar 

  14. Romero, J. C., and J. F. Reckelhoff. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 34:943–949, 1999.

    Article  Google Scholar 

  15. Bruner, C. A., J. M. Weaver, and G. D. Fink. Sodium-dependent hypertension produced by chronic central angiotensin II infusion. Am. J. Physiol. Heart Circ. Physiol. 18:H321, 1985.

    Article  Google Scholar 

  16. Heeneman, S., J. F. M. Smits, P. J. A. Leenders, P. M. H. Schiffers, and M. J. A. P. Daemen. Effects of angiotensin II on cardiac function and peripheral vascular structure during compensated heart failure in the rat. Arterioscler. Thromb. Vasc. Biol. 17:1985–1994, 1997.

    Article  Google Scholar 

  17. Landmesser, U., H. Cai, S. Dikalov, L. McCann, J. Hwang, H. Jo, S. M. Holland, and D. G. Harrison. Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 40:511–515, 2002.

    Article  Google Scholar 

  18. Madhur, M. S., S. A. Funt, L. Li, A. Vinh, W. Chen, H. E. Lob, Y. Iwakura, Y. Blinder, A. Rahman, A. A. Quyyumi, and D. G. Harrison. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31:1565–1572, 2011.

    Article  Google Scholar 

  19. Li, W. J., Y. Liu, J. J. Wang, Y. L. Zhang, S. Lai, Y. L. Xia, H. X. Wang, and H. H. Li. “angiotensin II memory” contributes to the development of hypertension and vascular injury via activation of NADPH oxidase. Life Sci. 149:18–24, 2016.

    Article  Google Scholar 

  20. Ryan, M. J., S. P. Didion, S. Mathur, F. M. Faraci, and C. D. Sigmund. Angiotensin II-induced vascular dysfunction is mediated by the AT 1A receptor in mice. Hypertension. 43:1074–1079, 2004.

    Article  Google Scholar 

  21. Rio, D. C., M. Ares, G. J. Hannon, and T. W. Nilsen. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb. Protoc. 5:5439, 2010.

    Article  Google Scholar 

  22. Tarca, A. L., S. Draghici, P. Khatri, S. S. Hassan, P. Mittal, J.-S. Kim, C. J. Kim, J. P. Kusanovic, and R. Romero. A novel signaling pathway impact analysis. Bioinformatics. 25:75–82, 2009.

    Article  Google Scholar 

  23. Ahsan, S., and S. Drăghici. Identifying significantly impacted pathways and putative mechanisms with iPathwayGuide. Curr. Protoc. Bioinform. 2017:7.15.1-7.15.30, 2017.

    Google Scholar 

  24. de Man, F. S., L. Tu, M. L. Handoko, S. Rain, G. Ruiter, C. François, I. Schalij, P. Dorfmüller, G. Simonneau, E. Fadel, and F. Perros. Dysregulated renin–angiotensin–aldosterone system contributes to pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186(8):780–789, 2012.

    Article  Google Scholar 

  25. Ranchoux, B., F. Antigny, C. Rucker-Martin, A. Hautefort, C. Péchoux, H. J. Bogaard, P. Dorfmüller, S. Remy, F. Lecerf, S. Planté, S. Chat, E. Fadel, A. Houssaini, I. Anegon, S. Adnot, G. Simonneau, M. Humbert, S. Cohen-Kaminsky, and F. Perros. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 131:1006–1018, 2015.

    Article  Google Scholar 

  26. Kehoe, P. G., S. Miners, and S. Love. Angiotensins in Alzheimer’s disease-friend or foe? Trends Neurosci. 32:619–628, 2009.

    Article  Google Scholar 

  27. Birk, M., E. Baum, J. K. Zadeh, C. Manicam, N. Pfeiffer, A. Patzak, J. Helmstädter, S. Steven, M. Kuntic, A. Daiber, and A. Gericke. Angiotensin II induces oxidative stress and endothelial dysfunction in mouse ophthalmic arteries via involvement of AT1 receptors and NOX2. Antioxidants. 10:1238, 2021.

    Article  Google Scholar 

  28. Khramtsova, E. A., L. K. Davis, and B. E. Stranger. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 20:494, 2019.

    Article  Google Scholar 

  29. Oliva, M., et al. The impact of sex on gene expression across human tissues. Science. 369(eaba3066):2020, 1979.

    Google Scholar 

  30. Xiao, L., D. J. Kim, C. L. Davis, J. V. McCann, J. M. Dunleavey, A. K. Vanderlinden, N. Xu, S. G. Pattenden, S. V. Frye, X. Xu, and M. Onaitis. Tumor endothelial cells with distinct patterns of TGFβ-driven endothelial-to-mesenchymal transition endothelial-to-mesenchymal transition. Cancer Res. 75(7):1244–1254, 2015.

    Article  Google Scholar 

  31. Robertson, I. B., and D. B. Rifkin. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol.8:a021907, 2016.

    Article  Google Scholar 

  32. Walton, K. L., Y. Makanji, J. Chen, M. C. Wilce, K. L. Chan, D. M. Robertson, and C. A. Harrison. Two distinct regions of latency-associated peptide coordinate stability of the latent transforming growth factor-Î21 complex*. J. Biol. Chem. 285:17029–17037, 2010.

    Article  Google Scholar 

  33. Miyazono, K., A. Olofsson, P. Colosetti, and C. H. Heldin. A role of the latent TGF-β1-binding protein in the assembly and secretion of TGF-β1. EMBO J. 10:1091–1101, 1991.

    Article  Google Scholar 

  34. Maleszewska, M., J. R. A. J. Moonen, N. Huijkman, B. van de Sluis, G. Krenning, and M. C. Harmsen. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology. 218:443–454, 2013.

    Article  Google Scholar 

  35. Yoshimatsu, Y., I. Wakabayashi, S. Kimuro, N. Takahashi, K. Takahashi, M. Kobayashi, N. Maishi, K. A. Podyma-Inoue, K. Hida, K. Miyazono, and T. Watabe. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci. 111:2385–2399, 2020.

    Article  Google Scholar 

  36. Evrard, S. M., L. Lecce, K. C. Michelis, A. Nomura-Kitabayashi, G. Pandey, K. R. Purushothaman, V. D’Escamard, J. R. Li, L. Hadri, K. Fujitani, P. R. Moreno, L. Benard, P. Rimmele, A. Cohain, B. Mecham, G. J. Randolph, E. G. Nabel, R. Hajjar, V. Fuster, M. Boehm, and J. C. Kovacic. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7:11853, 2016.

    Article  Google Scholar 

  37. Aguado, B. A., C. J. Walker, J. C. Grim, M. E. Schroeder, D. Batan, B. J. Vogt, A. G. Rodriguez, J. A. Schwisow, K. S. Moulton, R. M. Weiss, D. D. Heistad, L. A. Leinwand, and K. S. Anseth. Genes that escape X chromosome inactivation modulate sex differences in valve myofibroblasts. Circulation. 145:513–530, 2022.

    Article  Google Scholar 

  38. Ma, J., G. van der Zon, M. A. F. V. Gonçalves, M. van Dinther, M. Thorikay, G. Sanchez-Duffhues, and P. ten Dijke. TGF-β-induced endothelial to mesenchymal transition is determined by a balance between SNAIL and ID factors. Front. Cell Dev. Biol. 9:182, 2021.

    Article  Google Scholar 

  39. Paschoud, S., A. M. Dogar, C. Kuntz, B. Grisoni-Neupert, L. Richman, and L. C. Kühn. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol. Cell Biol. 26:8228–8241, 2006.

    Article  Google Scholar 

  40. Masuda, K., B. Ripley, R. Nishimura, T. Mino, O. Takeuchi, G. Shioi, H. Kiyonari, and T. Kishimoto. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc. Natl. Acad. Sci. USA. 110:9409–9414, 2013.

    Article  Google Scholar 

  41. Matsushita, K., O. Takeuchi, D. M. Standley, Y. Kumagai, T. Kawagoe, T. Miyake, T. Satoh, H. Kato, T. Tsujimura, H. Nakamura, and S. Akira. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature. 458:1185–1190, 2009.

    Article  Google Scholar 

  42. Elias, J. A., and V. Lentz. IL-1 and tumor necrosis factor synergistically stimulate fibroblast IL-6 production and stabilize IL-6 messenger RNA. J. Immunol. 145:161–166, 1990.

    Article  Google Scholar 

  43. Simonneau, G., D. Montani, D. S. Celermajer, C. P. Denton, M. A. Gatzoulis, M. Krowka, P. G. Williams, and R. Souza. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 53:1801913, 2019.

    Article  Google Scholar 

  44. Kostyunina, D. S., and P. McLoughlin. Sex dimorphism in pulmonary hypertension: the role of the sex chromosomes. Antioxidants. 10:779, 2021.

    Article  Google Scholar 

  45. Mitchell, S. M., S. Lange, and H. Brus. Gendered citation patterns in international relations journals. Int. Stud. Perspect. 14:485–492, 2013.

    Article  Google Scholar 

  46. Dion, M. L., J. L. Sumner, and S. M. Mitchell. Gendered citation patterns across political science and social science methodology fields. Polit. Anal. 26:312–327, 2018.

    Article  Google Scholar 

  47. Caplar, N., S. Tacchella, and S. Birrer. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1:141, 2017.

    Article  Google Scholar 

  48. Maliniak, D., R. Powers, and B. F. Walter. The gender citation gap in international relations. Int. Organ. 67:889–922, 2013.

    Article  Google Scholar 

  49. Dworkin, J. D., K. A. Linn, E. G. Teich, P. Zurn, R. T. Shinohara, and D. S. Bassett. The extent and drivers of gender imbalance in neuroscience reference lists. bioRxiv. 2020. https://doi.org/10.1101/2020.01.03.894378.

    Article  Google Scholar 

  50. Bertolero, M. A., J. D. Dworkin, S. U. David, C. L. Lloreda, P. Srivastava, J. Stiso, D. Zhou, K. Dzirasa, D. A. Fair, A. N. Kaczkurkin, B. J. Marlin, D. Shohamy, L. Q. Uddin, P. Zurn, and D. S. Bassett. Racial and ethnic imbalance in neuroscience reference lists and intersections with gender. bioRxiv. 64:583, 2020.

    Google Scholar 

  51. Wang, X., J. D. Dworkin, D. Zhou, J. Stiso, E. B. Falk, D. S. Bassett, P. Zurn, and D. M. Lydon-Staley. Gendered citation practices in the field of communication. Ann. Int. Commun. Assoc. 2021. https://doi.org/10.1080/23808985.2021.1960180.

    Article  Google Scholar 

  52. Chatterjee, P., and R. M. Werner. Gender disparity in citations in high-impact journal articles. JAMA Netw. Open.4:e2114509, 2021.

    Article  Google Scholar 

  53. Fulvio, J. M., I. Akinnola, and B. R. Postle. Gender (im)balance in citation practices in cognitive neuroscience. J. Cogn. Neurosci. 33:3–7, 2021.

    Article  Google Scholar 

  54. Zhou, D., E. J. Cornblath, J. Stiso, E. G. Teich, J. D. Dworkin, A. S. Blevins, and D. S. Bassett. Gender Diversity Statement and Code Notebook v1.0. 2020. https://doi.org/10.5281/zenodo.3672110

  55. Ambekar, A., C. Ward, J. Mohammed, S. Male, and S. Skiena. Name-ethnicity classification from open sources. 2009.

  56. Sood, G., and S. Laohaprapanon. Predicting race and ethnicity from the sequence of characters in a name. arXiv:1805.02109, 2018.

Download references

Funding

The authors gratefully acknowledge funding support from the National Institutes of Health (Grant Nos. R21EB028466 and R01HL140239-01) to AMC, the National Science Foundation (Grant Nos. CMMI 1916814 and CBET 1916997) to AMC, the Brain and Behavior Initiative at the University of Maryland through the BBI Seed Grant Program to AMC, NIMHD 5U54MD013376 subproject 8281 to DFD, the National Science Foundation Graduate Research Fellowship Program (Grant No. DGE 1840340) to CMW, NSF REU 1757745 to MNH, the University of Maryland ASPIRE program to SMZ, the University of Maryland Presidential Postdoctoral Fellowship to GSS, and the American Heart Association Postdoctoral Fellowship 916512 to GSS.

Author information

Authors and Affiliations

Authors

Contributions

CMW and AMC conceived and designed the research. CMW, MNH, SMZ, and GS carried out the experiments. CMW, MNH, SMZ, NA, and DD analyzed data. CMW, MNH, SMZ, DFD, and AMC interpreted results of experiments. CMW and AMC prepared figures and drafted manuscript. CMW, MNH, SMZ, NA, DFD, and AMC edited, revised, and approved the final version of the manuscript.

Corresponding author

Correspondence to Alisa Morss Clyne.

Ethics declarations

Conflict of interest

Callie M. Weber, Mikayla N. Harris, Sophia M. Zic, Gurneet S. Sangha, Nicole S. Arnold, Douglas F. Dluzen, and Alisa Morss Clyne do not have any conflicts of interest, financial or otherwise, to declare.

Ethical Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients being included in the study.

Animal Rights

No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, C.M., Harris, M.N., Zic, S.M. et al. Angiotensin II Increases Oxidative Stress and Inflammation in Female, But Not Male, Endothelial Cells. Cel. Mol. Bioeng. 16, 127–141 (2023). https://doi.org/10.1007/s12195-023-00762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-023-00762-2

Keywords

Navigation