Skip to main content

Advertisement

Log in

Endothelial Cell Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The goal of this study was to investigate how concurrent shear stress and tensile strain affect endothelial cell biomechanical responses.

Methods

Human coronary artery endothelial cells were exposed to concurrent pulsatile shear stress and cyclic tensile strain in a programmable shearing and stretching device. Three shear stress–tensile strain conditions were used: (1) pulsatile shear stress at 1 Pa and cyclic tensile strain at 7%, simulating normal stress/strain conditions in a healthy coronary artery; (2) shear stress at 3.7 Pa and tensile strain at 3%, simulating pathological stress/strain conditions near a stenosis; (3) shear stress at 0.7 Pa and tensile strain at 5%, simulating pathological stress/strain conditions in a recirculation zone. Cell morphology was quantified using immunofluorescence microscopy. Cell surface PECAM-1 phosphorylation, ICAM-1 expression, ERK1/2 and NF-κB activation were measured using ELISA or Western blot.

Results

Simultaneous stimulation from pulsatile shear stress and cyclic tensile strain induced a significant increase in cell area, compared to that induced by shear stress or tensile strain alone. The combined stimulation caused significant increases in PECAM-1 phosphorylation. The combined stimulation also significantly enhanced EC surface ICAM-1 expression (compared to that under shear stress alone) and transcriptional factor NF-κB activation (compared to that under control conditions).

Conclusion

Pulsatile shear stress and cyclic tensile strain could induce increased but not synergistic effect on endothelial cell morphology or activation. The combined mechanical stimulation can be relayed from cell membrane to nucleus. Therefore, to better understand how mechanical conditions affect endothelial cell mechanotransduction and cardiovascular disease development, both shear stress and tensile strain need to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amaya, R., L. M. Cancel, and J. M. Tarbell. Interaction between the stress phase angle (SPA) and the oscillatory shear index (OSI) affects endothelial cell gene expression. PLoS ONE 11(11):e0166569, 2016.

    Article  Google Scholar 

  2. Amaya, R., A. Pierides, and J. M. Tarbell. The interaction between fluid wall shear stress and solid circumferential strain affects endothelial gene expression. PLoS ONE 10(7):e0129952, 2015.

    Article  Google Scholar 

  3. Azuma, N., S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio. Endothelial cell response to different mechanical forces. J. Vasc. Surg. 32(4):789–794, 2000.

    Article  Google Scholar 

  4. Azuma, N., S. A. Duzgun, M. Ikeda, H. Kito, N. Akasaka, T. Sasajima, and B. E. Sumpio. Endothelial cell response to different mechanical forces. J. Vasc. Surg. 32(4):789–794, 2000.

    Article  Google Scholar 

  5. Birukova, A. A., S. Chatchavalvanich, A. Rios, K. Kawkitinarong, J. G. Garcia, and K. G. Birukov. Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. Am. J. Pathol. 168(5):1749–1761, 2006.

    Article  Google Scholar 

  6. Breen, L. T., P. E. McHugh, and B. P. Murphy. Multi-axial mechanical stimulation of HUVECs demonstrates that combined loading is not equivalent to the superposition of individual wall shear stress and tensile hoop stress components. J. Biomech. Eng. 131(8):081001, 2009.

    Article  Google Scholar 

  7. Breen, L. T., P. E. McHugh, and B. P. Murphy. HUVEC ICAM-1 and VCAM-1 synthesis in response to potentially athero-prone and athero-protective mechanical and nicotine chemical stimuli. Ann. Biomed. Eng. 38(5):1880–1892, 2010.

    Article  Google Scholar 

  8. Chatterjee, S., E. A. Browning, N. Hong, K. DeBolt, E. M. Sorokina, W. Liu, M. J. Birnbaum, and A. B. Fisher. Membrane depolarization is the trigger for PI3 K/Akt activation and leads to the generation of ROS. Am. J. Physiol. Heart Circ. Physiol. 302(1):H105–114, 2012.

    Article  Google Scholar 

  9. Chatterjee, S., K. Fujiwara, N. G. Perez, M. Ushio-Fukai, and A. B. Fisher. Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses. Am. J. Physiol. Heart Circ. Physiol. 308(12):H1451–1462, 2015.

    Article  Google Scholar 

  10. Cheng, J. J., B. S. Wung, Y. J. Chao, and D. L. Wang. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 28(3):386–391, 1996.

    Article  Google Scholar 

  11. Chiu, Y.-J. Identification of the kinase for flow-and stretch-elicited phosphorylation of platelet endothelial cell adhesion molecule-1 in endothelial cells. Thesis (Ph.D.), University of Rochester. School of Medicine and Dentistry. Dept. of Biochemistry and Biophysics, 2008. http://hdl.handle.net/1802/6626.

  12. Conway, D. E., M. T. Breckenridge, E. Hinde, E. Gratton, C. S. Chen, and M. A. Schwartz. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23(11):1024–1030, 2013.

    Article  Google Scholar 

  13. Correa-Meyer, E., L. Pesce, C. Guerrero, and J. I. Sznajder. Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 282(5):L883–891, 2002.

    Article  Google Scholar 

  14. Dancu, M. B., and J. M. Tarbell. Large Negative Stress Phase Angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells. J. Biomech. Eng. 128(3):329–334, 2006.

    Article  Google Scholar 

  15. Dewey, Jr., C. F., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103(3):177–185, 1981.

    Article  Google Scholar 

  16. Doriot, P. A., P. A. Dorsaz, L. Dorsaz, E. De Benedetti, P. Chatelain, and P. Delafontaine. In-vivo measurements of wall shear stress in human coronary arteries. Coron. Artery Dis. 11(6):495–502, 2000.

    Article  Google Scholar 

  17. Dorland, Y. L., and S. Huveneers. Cell–cell junctional mechanotransduction in endothelial remodeling. Cell. Mol. Life Sci. 74(2):279–292, 2017.

    Article  Google Scholar 

  18. Fujioka, K., N. Azuma, H. Kito, V. Gahtan, K. Esato, and B. E. Sumpio. Role of caveolin in hemodynamic force-mediated endothelial changes. J. Surg. Res. 92(1):7–10, 2000.

    Article  Google Scholar 

  19. Fujiwara, K. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J. Intern. Med. 259(4):373–380, 2006.

    Article  Google Scholar 

  20. Gambillara, V., C. Chambaz, G. Montorzi, S. Roy, N. Stergiopulos, and P. Silacci. Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 290(6):H2320–2328, 2006.

    Article  Google Scholar 

  21. Gawlak, G., S. Son, Y. Tian, J. J. O’Donnell, 3rd, K. G. Birukov, and A. A. Birukova. Chronic high-magnitude cyclic stretch stimulates EC inflammatory response via VEGF receptor 2-dependent mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 310(11):L1062–1070, 2016.

    Article  Google Scholar 

  22. Golledge, J., R. J. Turner, S. L. Harley, D. R. Springall, and J. T. Powell. Circumferential deformation and shear stress induce differential responses in saphenous vein endothelium exposed to arterial flow. J. Clin. Invest. 99(11):2719, 1997.

    Article  Google Scholar 

  23. Gulino-Debrac, D. Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers 1(2):e24180, 2013.

    Article  Google Scholar 

  24. Hajra, L., A. I. Evans, M. Chen, S. J. Hyduk, T. Collins, and M. I. Cybulsky. The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. 97(16):9052–9057, 2000.

    Article  Google Scholar 

  25. Hashimoto, K., N. Kataoka, E. Nakamura, K. Tsujioka, and F. Kajiya. Oxidized LDL specifically promotes the initiation of monocyte invasion during transendothelial migration with upregulated PECAM-1 and downregulated VE-cadherin on endothelial junctions. Atherosclerosis. 194(2):e9–e17, 2007.

    Article  Google Scholar 

  26. Hay, D. C., C. Beers, V. Cameron, L. Thomson, F. W. Flitney, and R. T. Hay. Activation of NF-kappaB nuclear transcription factor by flow in human endothelial cells. Biochim. Biophys. Acta 1642(1–2):33–44, 2003.

    Article  Google Scholar 

  27. Heart Disease Facts American Heart Association. Heart Disease and Stroke Update 2015. Cited 2 February 2016. http://www.theheartfoundation.org/heart-disease-facts/heart-disease-statistics/.

  28. Heuslein, J. L., J. K. Meisner, X. Li, J. Song, H. Vincentelli, R. J. Leiphart, E. G. Ames, B. R. Blackman, B. R. Blackman, and R. J. Price. Mechanisms of amplified arteriogenesis in collateral artery segments exposed to reversed flow direction. Arterioscler. Thromb. Vasc. Biol. 35(11):2354–2365, 2015.

    Article  Google Scholar 

  29. Hsiai, T. K., S. K. Cho, H. M. Honda, S. Hama, M. Navab, L. L. Demer, and C. M. Ho. Endothelial cell dynamics under pulsating flows: significance of high versus low shear stress slew rates (d(tau)/dt). Ann. Biomed. Eng. 30(5):646–656, 2002.

    Article  Google Scholar 

  30. Hsu, H. J., C. F. Lee, and R. Kaunas. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS ONE 4(3):e4853, 2009.

    Article  Google Scholar 

  31. Hunt, B. J., and K. M. Jurd. Endothelial cell activation. A central pathophysiological process. BMJ. 316(7141):1328–1329, 1998.

    Article  Google Scholar 

  32. Hurley, N. E., L. A. Schildmeyer, K. A. Bosworth, Y. Sakurai, S. G. Eskin, L. H. Hurley, and L. V. McIntire. Modulating the functional contributions of c-Myc to the human endothelial cell cyclic strain response. J. Vasc. Res. 47(1):80–90, 2010.

    Article  Google Scholar 

  33. Hwang, J., M. H. Ing, A. Salazar, B. Lassegue, K. Griendling, M. Navab, A. Sevanian, and T. K. Hsiai. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ. Res. 93(12):1225–1232, 2003.

    Article  Google Scholar 

  34. Jalali, S., Y.-S. Li, M. Sotoudeh, S. Yuan, S. Li, S. Chien, and J. Y. Shyy. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18(2):227–234, 1998.

    Article  Google Scholar 

  35. Jo, H., K. Sipos, Y. M. Go, R. Law, J. Rong, and J. M. McDonald. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J. Biol. Chem. 272(2):1395–1401, 1997.

    Article  Google Scholar 

  36. Johnson, B. D., K. J. Mather, and J. P. Wallace. Mechanotransduction of shear in the endothelium: basic studies and clinical implications. Vasc. Med. 16(5):365–377, 2011.

    Article  Google Scholar 

  37. Juan, S. H., J. J. Chen, C. H. Chen, H. Lin, C. F. Cheng, J. C. Liu, M. H. Hsieh, Y. L. Chen, H. H. Chao, T. H. Chen, P. Chan, and T. H. Cheng. 17beta-estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 287(3):H1254–1261, 2004.

    Article  Google Scholar 

  38. Keegan, P. M., S. Anbazhakan, B. Kang, B. S. Pace, and M. O. Platt. Biomechanical and biochemical regulation of cathepsin K expression in endothelial cells converge at AP-1 and NF-kappaB. Biol. Chem. 397(5):459–468, 2016.

    Article  Google Scholar 

  39. Kevil, C. G., A. W. Orr, W. Langston, K. Mickett, J. Murphy-Ullrich, R. P. Patel, D. F. Kucik, and D. C. Bullard. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J. Biol. Chem. 279(18):19230–19238, 2004.

    Article  Google Scholar 

  40. Kohn, J. C., D. W. Zhou, F. Bordeleau, A. L. Zhou, B. N. Mason, M. J. Mitchell, M. R. King, and C. A. Reinhart-King. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys. J . 108(3):471–478, 2015.

    Article  Google Scholar 

  41. Kou, B., J. Zhang, and D. R. Singer. Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NAD(P)H subunit p22phox. Microvasc. Res. 77(2):125–133, 2009.

    Article  Google Scholar 

  42. Kumar, A., E. W. Thompson, A. Lefieux, D. S. Molony, E. L. Davis, N. Chand, S. Fournier, H. S. Lee, J. Suh, K. Sato, Y.-A. Ko, D. Molloy, K. Chandran, H. Hosseini, S. Gupta, A. Milkas, B. Gogas, H.-J. Chang, J. K. Min, W. F. Fearon, A. Veneziani, D. P. Giddens, S. B. King, B. De Bruyne, and H. Samady. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J. Am. Coll. Cardiol. 72(16):1926–1935, 2018.

    Article  Google Scholar 

  43. Kyriakis, J. M., and J. Avruch. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol. Rev. 92(2):689–737, 2012.

    Article  Google Scholar 

  44. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107(4):341–347, 1985.

    Article  Google Scholar 

  45. Li, Y.-S. J., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38(10):1949–1971, 2005.

    Article  Google Scholar 

  46. Li, L. F., B. Ouyang, G. Choukroun, R. Matyal, M. Mascarenhas, B. Jafari, J. V. Bonventre, T. Force, and D. A. Quinn. Stretch-induced IL-8 depends on c-Jun NH2-terminal and nuclear factor-kappaB-inducing kinases. Am. J. Physiol. Lung Cell. Mol. Physiol. 285(2):L464–475, 2003.

    Article  Google Scholar 

  47. Li, Y.-S., J. Shyy, S. Li, J. Lee, B. Su, M. Karin, and S. Chien. The Ras-JNK pathway is involved in shear-induced gene expression. Mol. Cell. Biol. 16(11):5947–5954, 1996.

    Article  Google Scholar 

  48. Liu, Z., J. L. Tan, D. M. Cohen, M. T. Yang, N. J. Sniadecki, S. A. Ruiz, C. M. Nelson, and C. S. Chen. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl Acad. Sci. U.S.A. 107(22):9944–9949, 2010.

    Article  Google Scholar 

  49. Lu, D., and G. S. Kassab. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 8(63):1379–1385, 2011.

    Article  Google Scholar 

  50. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. U.S.A. 94(3):849–854, 1997.

    Article  Google Scholar 

  51. Meza, D., L. Abejar, D. A. Rubenstein, and W. Yin. A shearing-stretching device that can apply physiological fluid shear stress and cyclic stretch concurrently to endothelial cells. J. Biomech. Eng. 138(3):4032550, 2016.

    Article  Google Scholar 

  52. Meza, D., D. A. Rubenstein, and W. Yin. A comprehensive fluid–structure interaction model of the left coronary artery. J. Biomech. Eng. 140:121006, 2018.

    Article  Google Scholar 

  53. Meza, D., S. K. Shanmugavelayudam, A. Mendoza, C. Sanchez, D. A. Rubenstein, and W. Yin. Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1. Thromb. Res. 150:44–50, 2017.

    Article  Google Scholar 

  54. Mohan, S., N. Mohan, and E. A. Sprague. Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments. Am. J. Physiol. Cell Physiol. 273(2):C572–C578, 1997.

    Article  Google Scholar 

  55. Moore, Jr., J. E., E. Burki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, and J. J. Meister. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann. Biomed. Eng. 22(4):416–422, 1994.

    Article  Google Scholar 

  56. Morrow, D., P. Cullen-John, A. Cahill Paul, and M. Redmond Eileen. Cyclic strain regulates the notch/CBF-1 signaling pathway in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 27(6):1289–1296, 2007.

    Article  Google Scholar 

  57. Nagel, T., N. Resnick, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19(8):1825–1834, 1999.

    Article  Google Scholar 

  58. Pedrigi, R. M., K. I. Papadimitriou, A. Kondiboyina, S. Sidhu, J. Chau, M. B. Patel, D. C. Baeriswyl, E. M. Drakakis, and R. Krams. Disturbed cyclical stretch of endothelial cells promotes nuclear expression of the pro-atherogenic transcription factor NF-kappaB. Ann. Biomed. Eng. 45(4):898–909, 2017.

    Article  Google Scholar 

  59. Plotnikov, A., E. Zehorai, S. Procaccia, and R. Seger. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 1813(9):1619–1633, 2011.

    Article  Google Scholar 

  60. Potter, C. M. F., S. Schobesberger, M. H. Lundberg, P. D. Weinberg, J. A. Mitchell, and J. Gorelik. Shape and compliance of endothelial cells after shear stress in vitro or from different aortic regions: scanning ion conductance microscopy study. PLoS ONE 7(2):e31228, 2012.

    Article  Google Scholar 

  61. Raaz, U., H. Kuhn, H. Wirtz, and S. Hammerschmidt. Rapamycin reduces high-amplitude, mechanical stretch-induced apoptosis in pulmonary microvascular endothelial cells. Microvasc. Res. 77(3):297–303, 2009.

    Article  Google Scholar 

  62. Remuzzi, A., C. F. Dewey, Jr., P. F. Davies, and M. A. Gimbrone, Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology 21(4):617–630, 1984.

    Article  Google Scholar 

  63. Riou, S., B. Mees, B. Esposito, R. Merval, J. Vilar, D. Stengel, E. Ninio, R. van Haperen, R. de Crom, A. Tedgui, and S. Lehoux. High pressure promotes monocyte adhesion to the vascular wall. Circ. Res. 100(8):1226–1233, 2007.

    Article  Google Scholar 

  64. Rouleau, L., M. Farcas, J. C. Tardif, R. Mongrain, and R. L. Leask. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients. J. Biomech. Eng. 132(8):081013, 2010.

    Article  Google Scholar 

  65. Russo, T. A., D. Stoll, H. B. Nader, and J. L. Dreyfuss. Mechanical stretch implications for vascular endothelial cells: altered extracellular matrix synthesis and remodeling in pathological conditions. Life Sci. 213:214–225, 2018.

    Article  Google Scholar 

  66. Samady, H., P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, L. H. Timmins, A. A. Quyyumi, and D. P. Giddens. coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788, 2011.

    Article  Google Scholar 

  67. Sei, Y. J., S. I. Ahn, T. Virtue, T. Kim, and Y. Kim. Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor. Sci. Rep. 7(1):10019, 2017.

    Article  Google Scholar 

  68. Seko, Y., N. Takahashi, K. Tobe, T. Kadowaki, and Y. Yazaki. Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125(FAK)) in cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun. 259(1):8–14, 1999.

    Article  Google Scholar 

  69. Shanmugavelayudam, S. K., D. A. Rubenstein, and W. Yin. Effects of physiologically relevant dynamic shear stress on platelet complement activation. Platelets 22(8):602–610, 2011.

    Article  Google Scholar 

  70. Stoner, L., J. M. Young, S. Fryer, and M. J. Sabatier. The importance of velocity acceleration to flow-mediated dilation. Int. J. Vasc. Med. 2012:589213, 2012.

    Google Scholar 

  71. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4–and TGF-β1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29(2):254–260, 2009.

    Article  Google Scholar 

  72. Sumpio, B. E., S. Yun, A. C. Cordova, M. Haga, J. Zhang, Y. Koh, and J. A. Madri. MAPKs (ERK½, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells. J. Biol. Chem. 280(12):11185–11191, 2005.

    Article  Google Scholar 

  73. Thacher, T., V. Gambillara, R. F. da Silva, P. Silacci, and N. Stergiopulos. Reduced cyclic stretch, endothelial dysfunction, and oxidative stress: an ex vivo model. Cardiovasc. Pathol. 19(4):e91–98, 2010.

    Article  Google Scholar 

  74. Tseng, H., T. E. Peterson, and B. C. Berk. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ. Res. 77(5):869–878, 1995.

    Article  Google Scholar 

  75. Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431, 2005.

    Article  Google Scholar 

  76. Ueki, Y. A., N. Sakamoto, T. Ohashi, and M. Sato. Morphological responses of vascular endothelial cells induced by local stretch transmitted through intercellular junctions. Exp. Mech. 49(1):125, 2009.

    Article  Google Scholar 

  77. van Wolferen, S. A., J. T. Marcus, N. Westerhof, M. D. Spreeuwenberg, K. M. Marques, J. G. Bronzwaer, I. R. Henkens, C. T. Gan, A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur. Heart J. 29(1):120–127, 2008.

    Article  Google Scholar 

  78. Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky, and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler. Thromb. Vasc. Biol. 15(1):2–10, 1995.

    Article  Google Scholar 

  79. Wang, J. G., M. Miyazu, E. Matsushita, M. Sokabe, and K. Naruse. Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochem. Biophys. Res. Commun. 288(2):356–361, 2001.

    Article  Google Scholar 

  80. White, C. R., H. Y. Stevens, M. Haidekker, and J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 289(6):H2350–2355, 2005.

    Article  Google Scholar 

  81. Woodfin, A., M. B. Voisin, and S. Nourshargh. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol. 27(12):2514–2523, 2007.

    Article  Google Scholar 

  82. Wu, J., S. R. Thabet, A. Kirabo, D. W. Trott, M. A. Saleh, L. Xiao, M. S. Madhur, W. Chen, and D. G. Harrison. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114(4):616–625, 2014.

    Article  Google Scholar 

  83. Wung, B. S., J. J. Cheng, H. J. Hsieh, Y. J. Shyy, and D. L. Wang. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res. 81(1):1–7, 1997.

    Article  Google Scholar 

  84. Yamamoto, K., and J. Ando. Emerging role of plasma membranes in vascular endothelial mechanosensing. Circ. J. 82(11):2691–2698, 2018.

    Article  Google Scholar 

  85. Yin, W., S. K. Shanmugavelayudam, and D. A. Rubenstein. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thromb. Res. 127(3):235–241, 2011.

    Article  Google Scholar 

  86. Yoshizumi, M., J. Abe, K. Tsuchiya, B. C. Berk, and T. Tamaki. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J. Pharmacol. Sci. 91(3):172–176, 2003.

    Article  Google Scholar 

  87. Zhao, S., A. Suciu, T. Ziegler, J. E. Moore, Jr., E. Burki, J. J. Meister, and H. R. Brunner. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton. Arterioscler. Thromb. Vasc. Biol. 15(10):1781–1786, 1995.

    Article  Google Scholar 

Download references

Funding

This study was in part supported by an American Heart Association Grant in Aid Award (16GRNT30440002).

Conflict of Interest

None for Daphne Meza, Bryan Musmacker, Elisabeth Steadman, Thomas Stransky, David A. Rubenstein, and Wei Yin.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yin.

Additional information

Associate Editor William H. Guilford oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meza, D., Musmacker, B., Steadman, E. et al. Endothelial Cell Biomechanical Responses are Dependent on Both Fluid Shear Stress and Tensile Strain. Cel. Mol. Bioeng. 12, 311–325 (2019). https://doi.org/10.1007/s12195-019-00585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-019-00585-0

Keywords

Navigation