Skip to main content
Log in

Expiratory computed tomographic techniques: A cause of a poor rate of change in lung volume

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Ninety-nine patients (29 males and 70 females; mean age, 57.1 years; range, 22–81 years) were included in this study to evaluate the factors affecting smaller lung volume changes in expiratory high-resolution computed tomography performed to depict air trapping. All patients underwent inspiratory and expiratory chest thin-section CT examinations and pulmonary function tests. Air trapping on CT images was graded subjectively. All variables (age, sex, diagnosis, pulmonary function index, and air trapping score) were compared with the degree of change in lung volume between the inspiratory and expiratory CT examinations. The variables affecting a lower degree of volume change were vital capacity, forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and the FEV1.0/FVC ratio. Bronchiolitis obliterans was the dominant diagnosis in patients with insufficient degrees of breath holding and in patients with negative air trapping scores despite an abnormal air trapping index. An insufficient degree of lung changes between inspiration and expiration on CT examinations represented bronchiolitis obliterans, which resulted in low FEV1.0 and FEV1.0/FVC values. Changes in the time gap from the announcement of exhalation and breath holding to the start of scanning most effectively indicated air trapping in patients with bronchiolar disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Devakonda A, Raoof S, Sung A, Travis WD, Naidich D. Bronchiolar disorders: a clinical-radiological diagnostic algorithm. Chest. 2010;137:938–51.

    Article  PubMed  Google Scholar 

  2. Arakawa H, Webb WR, McCowin M, Katsou G, Lee KN, Seitz RF. Inhomogeneous lung attenuation at thin-section CT: diagnostic value of expiratory scans. Radiology. 1998;206(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  3. Arakawa H, Gevenois PA, Saito Y, Shida H, De Maertelaer V, Morikubo H, Fujioka M. Silicosis: expiratory thin-section CT assessment of airway obstruction. Radiology. 2005;236:1059–66.

    Article  PubMed  Google Scholar 

  4. Stern EJ, Müller NL, Swensen SJ, Hartman TE. CT mosaic pattern of lung attenuation: etiologies and terminology. J Thorac Imaging. 1995;10:294–7.

    Article  CAS  PubMed  Google Scholar 

  5. Arakawa H, Webb WR. Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis. AJR Am J Roentgenol. 1998;170(5):1349–53.

    Article  CAS  PubMed  Google Scholar 

  6. Bankier AA, Mehrain S, Kienzl D, Weber M, Estenne M, Gevenois PA. Regional heterogeneity of air trapping at expiratory thin-section CT of patients with bronchiolitis: potential implications for dose reduction and CT protocol planning. Radiology. 2008;247(3):862–70.

    Article  PubMed  Google Scholar 

  7. Webb WR. High-resolution computed tomography of obstructive lung disease. Radiol Clin North Am. 1994;32(4):745–57.

    CAS  PubMed  Google Scholar 

  8. Gleeson FV, Traill ZC, Hansell DM. Evidence of expiratory CT scans of small-airway obstruction in sarcoidosis. AJR Am J Roentgenol. 1996;166(5):1052–4.

    Article  CAS  PubMed  Google Scholar 

  9. Yang CF, Wu MT, Chiang AA, Lai RS, Chen C, Tiao WM, McLoud TC, Wang JS, Pan HB. Correlation of high-resolution CT and pulmonary function in bronchiolitis obliterans: a study based on 24 patients associated with consumption of Sauropus androgynus. AJR Am J Roentgenol. 1997;168:1045–50.

    Article  CAS  PubMed  Google Scholar 

  10. Eber CD, Stark P, Bertozzi P. Bronchiolitis obliterans on high-resolution CT: a pattern of mosaic oligemia. J Comput Assist Tomogr. 1993;17(6):853–6.

    Article  CAS  PubMed  Google Scholar 

  11. Standardization of spirometry, 1994 update. American Thoracic Society. Am J Respir Crit Care Med. (1995);152(3):1107–36

  12. Lee ES, Gotway MB, Reddy GP, Golden JA, Keith FM, Webb WR. Early bronchiolitis obliterans following lung transplantation: accuracy of expiratory thin-section CT for diagnosis. Radiology. 2000;216:472–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hansell DM, Rubens MB, Padley SP, Wells AU. Obliterative bronchiolitis: individual CT signs of small airways disease and functional correlation. Radiology. 1997;203:721–6.

    Article  CAS  PubMed  Google Scholar 

  14. Bankier AA, Van Muylem A, Knoop C, Estenne M, Gevenois PA. Bronchiolitis obliterans syndrome in heart–lung transplant recipients: diagnosis with expiratory CT. Radiology. 2001;218(2):533–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sweatman MC, Millar AB, Strickland B, Turner-Warwick M. Computed tomography in adult obliterative bronchiolitis. Clin Radiol. 1990;42(2):116–9.

    Article  Google Scholar 

  16. Grenier PA, Beigelman-Aubry C, Fétita C, Prêteux F, Brauner MW, Lenoir S. New frontiers in CT imaging of airway disease. Eur Radiol. 2002;12:1022–44.

    Article  PubMed  Google Scholar 

  17. Busacker A, Newell JD Jr, Keefe T, Hoffman EA, Granroth JC, Castro M, Fain S, Wenzel S. A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest. 2009;135:48–56.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Verschakelen JA, Scheinbaum K, Bogaert J, Demedts M, Lacquet LL, Baert AL. Expiratory CT in cigarette smokers: correlation between areas of decreased lung attenuation, pulmonary function tests and smoking history. Eur Radiol. 1998;8(8):1391–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bankier AA, Estenne M, Kienzl D, Müller-Mang C, Van Muylem A, Gevenois PA. Gravitational gradients in expiratory computed tomography examinations of patients with small airways disease: effect of body position on extent of air trapping. J Thorac Imaging. 2010;25(4):311–9.

    Article  PubMed  Google Scholar 

  20. Epler GR, Colby TV. The spectrum of bronchiolitis obliterans. Chest. 1983;83(2):161–2.

    Article  CAS  PubMed  Google Scholar 

  21. Padley SP, Adler BD, Hansell DM, Müller NL. Bronchiolitis obliterans: high resolution CT findings and correlation with pulmonary function tests. Clin Radiol. 1993;47(4):236–40.

    Article  CAS  PubMed  Google Scholar 

  22. Pryor JA, AmmanlPrasad S. Physiotherapy for respiratory and cardiac problems: adults and paediatrics. London: Churchill lingstone; 2008. p. 51–72.

    Google Scholar 

Download references

Acknowledgments

This report was presented orally at the 66th Annual Scientific Congress of the Japanese Society of Radiological Technology and was recommended for publication by the chairman.

Conflict of interest

All authors have no direct or indirect financial interest in the products under investigation or subject matter discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Morikawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, K., Okada, F. & Mori, H. Expiratory computed tomographic techniques: A cause of a poor rate of change in lung volume. Radiol Phys Technol 8, 153–159 (2015). https://doi.org/10.1007/s12194-014-0304-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-014-0304-z

Keywords

Navigation