Skip to main content
Log in

A subfamily of the small heat shock proteins of the marine red alga Neopyropia yezoensis localizes in the chloroplast

  • Original Article
  • Published:
Cell Stress and Chaperones Aims and scope

A Correction to this article was published on 15 November 2023

This article has been updated

Abstract

Small heat shock proteins (sHSPs) play a crucial role under abiotic stress and are present in all organisms, from eukaryotes to prokaryotes. However, studies on the sHSP gene family in red alga are limited. In this study, we aimed to identify and characterize NysHSP genes from the genome of N. yezoensis, a marine red alga adapted to the stressful intertidal zone. We identified seven NysHSP genes distributed on all three chromosomes. Expression analysis revealed that all NysHSP genes responded to H2O2 and heat stress in the gametophytic thalli, but these genes responded only to heat stress in the sporophytic conchocelis. NysHSP20.3, which has an acidic isoelectric point (pI) and short N-terminal region, was localized as granules in the cytosol. Fluorescence imaging of the NysHSP25.8-GFP and NysHSP28.4-GFP fusion proteins revealed that these proteins were located in the chloroplast. Based on their characteristics and cellular localization, the NysHSPs are divided into two subfamilies. Subfamily I includes four sHSP genes that strongly respond to heat stress and encode a protein localized in the cytosol. The NysHSP gene of subfamily II encodes a polypeptide with a long N-terminal region located in the chloroplast. This study provides insights into the evolution and function of the sHSP gene family of the marine red alga N. yezoensis and how it adapts to the stressful intertidal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The genome sequencing data of the N, yezoensis strain SG104 used in this study are available and the accession numbers are presented in the Method section.

Change history

References

  • Abe S, Kurashima A, Yokohama Y, Tanaka J (2001) The cellular ability of desiccation tolerance in Japanese intertidal seaweeds. Bot Mar 44:125–131

    Article  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  PubMed  Google Scholar 

  • Chen ST, He NY, Chen JU, Guo FQ (2017) Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis. Plant J 89:1106–1118

    Article  CAS  PubMed  Google Scholar 

  • Flores-Molina MR, Thomas D, Lovazzano C, Nunez A, Zapata J, Kumar M, Correa JA (2014) Contreras-Porcia, L. Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. Aquat Bot 113:90–99

    Article  CAS  Google Scholar 

  • Gao T, Mo Z, Tang L, Yu X, Du G, Mao Y (2022) Heat shock protein 20 gene superfamilys in red algae: evolutionary and functional diversities. Front Plant Sci 13:817852. https://doi.org/10.3389/fpls.2022.817852

    Article  PubMed  PubMed Central  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang MS, Chung IK, Oh YS (1997) Temperature responses of Porphyra tenera Kjellman and P. yezoensis Ueda (Bangiales, Rhodophyta) from Korea. Algae 12:207–213

    Google Scholar 

  • Im S, Lee HN, Jung HS, Yang S, Park EJ, Hwang MS, Jeong WJ, Choi DW (2017) Transcriptom-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2 in Chlamydomonas. Mar Biotechnol 19:232–245

    Article  CAS  Google Scholar 

  • Jin Y, Yang S, Im S, Jeong WJ, Park EJ, Choi DW (2017) Overexpression of the small heat shock protein, PtsHSP19.3 from marine red algae, Pyropia tenera (Bangiales, Rhodophyta) enhances abiotic stress tolerance in Chlamydomonas. J Plant Biotech 44:287–295

    Article  Google Scholar 

  • Kobayashi Y, Harada N, Nishimura Y, Saito T, Nakamura M, Fujiwara T, Kuroiwa T, Misumi O (2014) Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii. Genome Biol Evol 7:2731–2740

    Article  Google Scholar 

  • Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Kim IJ, Jo JK (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245:283–290

    Article  CAS  PubMed  Google Scholar 

  • Luo QJ, Zhu ZG, Zhu ZJ, Yang R, Qian FJ, Chen HM, Yan XJ (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS One 9:e94354. https://doi.org/10.1371/journal.pone.0094354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Guan X, Li J, Pan R, Wang L, Liu F, Ma H, Zhu S, Hu J, Ruan YL, Chen X, Zhang T (2019) Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proc Natl Acad Sci USA 116:4716–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, New York, pp 56–60

    Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng LN, Huang LB, Gui TY, Yan XH (2022) Identification and expression profiling of HSP20 gene in Neoporphyra haitanensis. J Appl Phycol. 34:1089–1097. https://doi.org/10.1007/s10811-022-02686-2

    Article  CAS  Google Scholar 

  • Rutgers M, Muranaka LS, Muhlhaus T, Sommer F, Thoms S, Schurig J, Willmund F, Schulz-Raffelt M, Schroda M (2017) Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii. Plant Mol Biol 95:579–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains Acd proteins. Cell Stress Chaperones 6:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedaghatmehr M, Mueller-Roeber B, Balazadeh S (2015) The plastid metalloprotease FtH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nat Commun 26(7):12439. https://doi.org/10.1038/ncommuns12439

    Article  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones 13:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Mikami K (2017) Oxidative stress promotes asexual reproduction and apogamy in the red seaweed Pyropia yezoensis. Front Plant Sci 8:62. https://doi.org/10.3389/fpls.2017.00062

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uji T, Gondaira Y, Fukuda S, Mizuta H, Saga N (2019) Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell Stress and Chaperones 24:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov RA, Panchuk II, Schoffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Yu X, Xu K, Bi G, Cao M, Zelzion E, Fu C, Sun P, Liu Y, Kong F, Du G, Tang X, Yang R, Wang J, Tang L, Wang L, Zhao Y, Ge Y, Zhuang Y et al (2020) Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat Commun 12(11):4028. https://doi.org/10.1038/s41467-020-17689-1

    Article  CAS  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER, Rioflorido I (2007) Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J Mol Evol 65:162–174

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999) Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci USA 96:14394–14399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER, Vierling E (2020) Plant small heat shock proteins-evolutionary and functional diversity. New Phytol 227:24–37

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Na Y, Im S, Jo J, Nguyen TD, Kin JS, Jeong WJ, Choi DW (2019) PtsHSP19.6, a small heat-shock protein from the marine red alga Pyropia tenera (Rhodophyta), aggregates into granules and enhances heat tolerance. J Appl Phycol 31:1921–1929

    Article  Google Scholar 

  • Yu J, Cheng Y, Fen K, Ruan M, Ye Q, Wang R, Li Z, Zhou F, Yao Z, Yang Y, Wang H (2018) Genome-wide identification and expression profiling of tomato HSP20 gene family in response to biotic and abiotic stress. Front Plant Sci 7:1215. https://doi.org/10.3389/fpls.2016.01215

    Article  Google Scholar 

  • Zhang K, Ezemaduka AN, Wang Z, Hu H, Shi X, Liu C, Lu X, Fu X, Chang Z, Yin CC (2015) A novel mechanism for small heat shock proteins to function as molecular chaperones. Sci Rep 5:8811. https://doi.org/10.1038/srep08811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q (2018) Genome-wide analysis of the potato HSP20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMG Genom 19:16. https://doi.org/10.1186/s12864-018-4443-1

    Article  CAS  Google Scholar 

  • Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C (2013) Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell 25:2925–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was supported by the National Research Foundation of Korea (NRF) grant (No. 2021R1I1A3047280) funded by the Korean Government; and a grant (No. R2023022) from the National Institute of Fisheries Science, ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woog Choi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the first author's given name contained a typo

Supplementary information

ESM 1

Supplementary Table 1. The amino acid sequences of the sHSPs included in the phylogenetic analysis. Supplementary Table 2. Comparative threshold (Ct) values of the NysHSP genes in the gametophyte thalli of N. yezoensis under heat, drought stress and H2O2 treatment. Supplementary Table 3. Comparative threshold (Ct) values of the NysHSP genes in the sporophytic conchocelis of N. yezoensis under heat stress, H2O2, and mannitol treatments. (XLSX 25 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wi, J., Park, EJ., Hwang, MS. et al. A subfamily of the small heat shock proteins of the marine red alga Neopyropia yezoensis localizes in the chloroplast. Cell Stress and Chaperones 28, 835–846 (2023). https://doi.org/10.1007/s12192-023-01375-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-023-01375-4

Keywords

Navigation