Skip to main content
Log in

Aspirin-induced heat stress resistance in chicken myocardial cells can be suppressed by BAPTA-AM in vitro

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Our recent studies have displayed the protective functions of aspirin against heat stress (HS) in chicken myocardial cells, and it may be associated with heat shock proteins (HSPs). In this study, we further investigated the potential role of HSPs in the aspirin-induced heat stress resistance. Four of the most important HSPs including HspB1 (Hsp27), Hsp60, Hsp70, and Hsp90 were induced by aspirin pretreatment and were suppressed by BAPTA-AM. When HSPs were induced by aspirin, much slighter HS injury was detected. But more serious damages were observed when HSPs were suppressed by BAPTA-AM than those cells exposed to HS without BAPTA-AM, even the myocardial cells have been treated with aspirin in prior. Comparing to other HSPs, HspB1 presented the largest increase after aspirin treatments, 86-fold higher than the baseline (the level before HS). These findings suggested that multiple HSPs participated in aspirin’s anti-heat stress function but HspB1 may contribute the most. Interestingly, during the experiments, we also found that apoptosis rate as well as the oxidative stress indicators (T-SOD and MDA) was not consistently responding to heat stress injury as expected. By selecting from a series of candidates, myocardial cell damage-related enzymes (CK-MB and LDH), cytopathological tests, and necrosis rate (measured by flow cytometry assays) are believed to be reliable indicators to evaluate heat stress injury in chicken’s myocardial cells and they will be used in our further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altan O, Pabuccuoglu A, Altan A, Konyalioglu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44:545–550. doi:10.1080/00071660310001618334

    Article  CAS  PubMed  Google Scholar 

  • Amberger A, Hala M, Saurwein-Teissl M, Metzler B, Grubeck-Loebenstein B, Xu Q, Wick G (1999) Suppressive effects of anti-inflammatory agents on human endothelial cell activation and induction of heat shock proteins. Mol Med 5:117–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benn SC et al (2002) Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 36:45–56

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233:145–162. doi:10.1016/j.jns.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Ohwatari N, Matsumoto T, Kosaka M, Ohtsuru A, Yamashita S (1999) TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflugers Arch - Eur J Physiol 438:239–244

    Article  CAS  Google Scholar 

  • Chang CK, Chang CP, Liu SY, Lin MT (2007) Oxidative stress and ischemic injuries in heat stroke. Prog Brain Res 162:525–546. doi:10.1016/S0079-6123(06)62025-6

    Article  CAS  PubMed  Google Scholar 

  • Das DK, Maulik N, Moraru II (1995) Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 27:181–193

    Article  CAS  PubMed  Google Scholar 

  • Dash R et al (2011) A molecular MRI probe to detect treatment of cardiac apoptosis in vivo. Magn Reson Med 66:1152–1162. doi:10.1002/mrm.22876

    Article  PubMed  PubMed Central  Google Scholar 

  • De Cristobal J, Cardenas A, Lizasoain I, Leza JC, Fernandez-Tome P, Lorenzo P, Moro MA (2002) Inhibition of glutamate release via recovery of ATP levels accounts for a neuroprotective effect of aspirin in rat cortical neurons exposed to oxygen-glucose deprivation. Stroke; J Cerebr Circ 33:261–267

    Article  Google Scholar 

  • de Graauw M, Tijdens I, Cramer R, Corless S, Timms JF, van de Water B (2005) Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J Biol Chem 280:29885–29898. doi:10.1074/jbc.M412708200

    Article  PubMed  Google Scholar 

  • Ding XZ, Smallridge RC, Galloway RJ, Kiang JG (1996) Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells: role of protein kinase C and [Ca2+]i. J Invest Med : Off Publ Am Fed Clin Res 44:144–153

    CAS  Google Scholar 

  • Dragomir E, Manduteanu I, Voinea M, Costache G, Manea A, Simionescu M (2004) Aspirin rectifies calcium homeostasis, decreases reactive oxygen species, and increases NO production in high glucose-exposed human endothelial cells. J Diabetes Complicat 18:289–299. doi:10.1016/j.jdiacomp.2004.03.003

    Article  PubMed  Google Scholar 

  • Ebert MP et al (2005) Protective role of heat shock protein 27 in gastric mucosal injury. J Pathol 207:177–184. doi:10.1002/path.1815

    Article  CAS  PubMed  Google Scholar 

  • Endo S et al (2007) Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol Pharmacol 72:1337–1348. doi:10.1124/mol.107.039164

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S, Antonelli E, Migliorati G, Santucci L, Morelli O, Federici B, Morelli A (1998) TNFalpha processing enzyme inhibitors prevent aspirin-induced TNFalpha release and protect against gastric mucosal injury in rats. Aliment Pharmacol Ther 12:1139–1153

    Article  CAS  PubMed  Google Scholar 

  • Flescher E, Fossum D, Gray PJ, Fernandes G, Harper MJ, Talal N (1991) Aspirin-like drugs prime human T cells. J Immunol 146:2553–2559

    CAS  PubMed  Google Scholar 

  • Gathiram P, Gaffin SL, Brock-Utne JG, Wells MT (1987) Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat Space Environ Med 58:1071–1074

    CAS  PubMed  Google Scholar 

  • Gathiram P, Wells MT, Raidoo D, Brock-Utne JG, Gaffin SL (1988) Portal and systemic plasma lipopolysaccharide concentrations in heat-stressed primates. Circ Shock 25:223–230

    CAS  PubMed  Google Scholar 

  • Geum D, Son GH, Kim K (2002) Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J Biol Chem 277:19913–19921. doi:10.1074/jbc.M104396200

    Article  CAS  PubMed  Google Scholar 

  • Ghavami A, Nutt MP, Hardy SP (2002) Heat shock protein and high-dose aspirin: effects on random skin flap survival in a rat model. Ann Plast Surg 48:60–67

    Article  PubMed  Google Scholar 

  • Green DR (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press

  • Hammill AK, Uhr JW, Scheuermann RH (1999) Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Exp Cell Res 251:16–21. doi:10.1006/excr.1999.4581

    Article  CAS  PubMed  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245

    Article  CAS  PubMed  Google Scholar 

  • Kaida T et al (1999) Vasopressin stimulates the induction of heat shock protein 27 and alphaB-crystallin via protein kinase C activation in vascular smooth muscle cells. Exp Cell Res 246:327–337. doi:10.1006/excr.1998.4277

    Article  CAS  PubMed  Google Scholar 

  • Keith A, Alexander J, Julian L, Martin R, Walter R (2008) Apoptosis: programmed cell death eliminates unwanted cells Molecular biology of the cell, 5th edn Garland Science, New York 1115

  • Kiang JG (2003) Genistein inhibits herbimycin A-induced over-expression of inducible heat shock protein 70 kDa. Mol Cell Biochem 245:191–199

    Article  CAS  PubMed  Google Scholar 

  • Kiang JG, Carr FE, Burns MR, McClain DE (1994) HSP-72 synthesis is promoted by increase in [Ca2+] i or activation of G proteins but not pHi or cAMP. Am J Phys Cell Phys 267:C104–C114

    CAS  Google Scholar 

  • Kiang JG, Gist ID, Tsokos GC (2000) Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells. Mol Cell Biochem 204:169–178

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara M, Takahashi K, Inanami O (2003) Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. J Radiat Res 44:203–209

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Crete P, Lamarche S, Chretien P (1988) Activation of Ca2+-dependent processes during heat shock: role in cell thermoresistance. Radiat Res 113:426–436

    Article  CAS  PubMed  Google Scholar 

  • Levine RA, Nandi J, King RL (1990) Aspirin potentiates prestimulated acid secretion and mobilizes intracellular calcium in rabbit parietal cells. J Clin Invest 86:400–408. doi:10.1172/JCI114725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Srivastava P (2004) Heat-shock proteins Current protocols in immunology / edited by John E Coligan [et al.] Appendix 1:Appendix 1T doi:10.1002/0471142735.ima01ts58

  • Liu L et al (2007) Over-expression of heat shock protein 27 attenuates doxorubicin-induced cardiac dysfunction in mice. Eur J Heart Fail 9:762–769. doi:10.1016/j.ejheart.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang K, Li H, Han S, Ma Z, Tu P (2013) Extracts from Astragalus membranaceus limit myocardial cell death and improve cardiac function in a rat model of myocardial ischemia. J Ethnopharmacol 149:720–728. doi:10.1016/j.jep.2013.07.036

    Article  PubMed  Google Scholar 

  • Masri C, Chandrashekhar Y (2008) Apoptosis: a potentially reversible, meta-stable state of the heart. Heart Fail Rev 13:175–179. doi:10.1007/s10741-007-9069-3

    Article  PubMed  Google Scholar 

  • Mearow KM, Dodge ME, Rahimtula M, Yegappan C (2002) Stress-mediated signaling in PC12 cells—the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 83:452–462

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  CAS  PubMed  Google Scholar 

  • Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M (2001) Apoptosis and the systolic dysfunction in congestive heart failure. Cardiol Clin 19:113–126

    Article  CAS  PubMed  Google Scholar 

  • Nuss JE et al (2014) Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS One 9, e93483. doi:10.1371/journal.pone.0093483

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383. doi:10.1056/NEJMra052717

    Article  CAS  PubMed  Google Scholar 

  • Paul C, Teng S, Saunders PT (2009) A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 80:913–919. doi:10.1095/biolreprod.108.071779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl LH, Prodromou C (2001) Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59:157–186

    Article  CAS  PubMed  Google Scholar 

  • Rai UC, Ambwany P (1980) Cardiovascular changes during varied thermal stress. Indian J Physiol Pharmacol 24:119–125

    CAS  PubMed  Google Scholar 

  • Ranford JC, Coates AR, Henderson B (2000) Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med 2:1–17. doi:10.1017/S1462399400002015

    Article  CAS  PubMed  Google Scholar 

  • Rcom-H’cheo-Gauthier A, Goodwin J, Pountney DL (2014) Interactions between calcium and alpha-synuclein in neurodegeneration. Biomolecules 4:795–811. doi:10.3390/biom4030795

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodemann HP, Waxman L, Goldberg AL (1982) The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease. J Biol Chem 257:8716–8723

    CAS  PubMed  Google Scholar 

  • Sandoval-Montiel AA, Zentella-de-Pina M, Ventura-Gallegos JL, Frias-Gonzalez S, Lopez-Macay A, Zentella-Dehesa A (2013) HSP-72 accelerated expression in mononuclear cells induced in vivo by acetyl salicylic acid can be reproduced in vitro when combined with H2O2. PLoS One 8, e65449. doi:10.1371/journal.pone.0065449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan G, Ponmurugan P, Sathiyavathi M, Vadivukkarasi S, Sengottuvelu S (2013) Cardioprotective activity of Amaranthus viridis Linn: effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. Int J Cardiol 165:494–498. doi:10.1016/j.ijcard.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Solomon DH, Glynn RJ, Levin R, Avorn J (2002) Nonsteroidal anti-inflammatory drug use and acute myocardial infarction. Arch Intern Med 162:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Tang S et al (2013) Localization and expression of Hsp27 and alphaB-crystallin in rat primary myocardial cells during heat stress in vitro. PLoS One 8, e69066. doi:10.1371/journal.pone.0069066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Lv Y, Chen H, Adam A, Cheng Y, Hartung J, Bao E (2014) Comparative analysis of alphaB-crystallin expression in heat-stressed myocardial cells in vivo and in vitro. PLoS One 9, e86937. doi:10.1371/journal.pone.0086937

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuda H, Kozawa O, Niwa M, Matsuno H, Kato K, Uematsu T (2002) Mechanism of prostaglandin E2-stimulated heat shock protein 27 induction in osteoblast-like MC3T3-E1 cells. J Endocrinol 172:271–281

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yuan B, Dong W, Yang B, Yang Y, Lin X, Gong G (2014) Induction of heat-shock protein 70 expression by geranylgeranylacetone shows cytoprotective effects in cardiomyocytes of mice under humid heat stress. PLoS One 9, e93536. doi:10.1371/journal.pone.0093536

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44. doi:10.1007/s10254-003-0021-1

    CAS  PubMed  Google Scholar 

  • Wischmeyer PE (2002) Glutamine and heat shock protein expression. Nutrition 18:225–228

    Article  CAS  PubMed  Google Scholar 

  • Wu D et al (2015) Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression. Cell Stress Chaperones. doi:10.1007/s12192-015-0596-x

    Google Scholar 

  • Wu D et al (2016) In vitro evaluation of aspirin-induced HspB1 against heat stress damage in chicken myocardial cells. Cell Stress Chaperones. doi:10.1007/s12192-016-0666-8

    PubMed Central  Google Scholar 

  • Xue HC, Li ZX, Zheng WW, Guo YZ, Feng DY, Liu JW (2015) Injuries of myocardial cells and changes of myocardial enzymes after firearm wound-induced intestinal perforation in porcine abdomen. Int J Clin Exp Med 8:2273–2278

    PubMed  PubMed Central  Google Scholar 

  • Yoshimune K, Yoshimura T, Nakayama T, Nishino T, Esaki N (2002) Hsc62, Hsc56, and GrpE, the third Hsp70 chaperone system of Escherichia coli. Biochem Biophys Res Commun 293:1389–1395. doi:10.1016/S0006-291X(02)00403-5

    Article  CAS  Google Scholar 

  • Zuma AA, Mendes IC, Reignault LC, Elias MC, de Souza W, Machado CR, Motta MC (2014) How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor. Mol Biochem Parasitol 193:93–100. doi:10.1016/j.molbiopara.2014.02.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31372403), the Natural Science Foundation of the Jiangsu Province (Grant No. BK20140107), the Postgraduate Student Research and Innovation Project of Jiangsu Province (KYLX15_0558), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Sino-German Agricultural Cooperation Project of the Federal Ministry of Food, the Agriculture and Consumer Production, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endong Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zhang, M., Lu, Y. et al. Aspirin-induced heat stress resistance in chicken myocardial cells can be suppressed by BAPTA-AM in vitro. Cell Stress and Chaperones 21, 817–827 (2016). https://doi.org/10.1007/s12192-016-0706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0706-4

Keywords

Navigation