Skip to main content
Log in

In vitro evaluation of aspirin-induced HspB1 against heat stress damage in chicken myocardial cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To understand the potential association of heat stress resistance with HspB1 induction by aspirin (ASA) in chicken myocardial cells, variations of HspB1 expression and heat stressed-induced damage of myocardial cells after ASA administration were studied in primary cultured myocardial cells. Cytopathological lesions as well as damage-related enzymes, such as creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), indicated the considerable protective ability of ASA pre-treatment against acute heat stress. Immunostaining assays showed that heat stress caused HspB1 to relocate into the nucleus, while ASA did not. ELISA analysis, revealed that HspB1 expression induced by ASA averaged 45.62-fold higher than that of the control. These results indicated that the acute heat-stressed injuries were accompanied by comparatively lower HspB1 expression caused by heat stress in vitro. ASA pre-treatment induced a level of HspB1 presumed to be sufficient to protect myocardial cells from acute heat stress in the extracorporal model, although more detailed mechanisms will require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari AS, Sridhar Rao K, Rangaraj N, Parnaik VK, Mohan Rao C (2004) Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for alphaB-crystallin and Hsp25. Exp Cell Res 299:393–403. doi:10.1016/j.yexcr.2004.05.032

    Article  CAS  PubMed  Google Scholar 

  • Amani M, Jeddi S, Ahmadiasl N, Usefzade N, Zaman J (2013) Effect of HEMADO on level of CK-MB and LDH enzymes after ischemia/reperfusion injury in isolated rat heart. Bio Impacts BI 3:101–104. doi:10.5681/bi.2013.003

    Google Scholar 

  • Amberger A, Hala M, Saurwein-Teissl M, Metzler B, Grubeck-Loebenstein B, Xu Q, Wick G (1999) Suppressive effects of anti-inflammatory agents on human endothelial cell activation and induction of heat shock proteins. Mol Med 5:117–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo APaL J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones., pp 335–373

    Google Scholar 

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benn SC et al (2002) Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 36:45–56

    Article  CAS  PubMed  Google Scholar 

  • Bryantsev AL, Loktionova SA, Ilyinskaya OP, Tararak EM, Kampinga HH, Kabakov AE (2002) Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts: a functional link to cytoprotection. Cell Stress Chaperones 7:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Yang YC, Wang JC, Wang JJ (2013) Curcumin treatment protects against renal ischemia and reperfusion injury-induced cardiac dysfunction and myocardial injury. Transplant Proc 45:3546–3549. doi:10.1016/j.transproceed.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Adam A, Cheng Y, Tang S, Hartung J, Bao E (2015) Localization and expression of heat shock protein 70 with rat myocardial cell damage induced by heat stress in vitro and in vivo. Mol Med Rep 11:2276–2284. doi:10.3892/mmr.2014.2986

    CAS  PubMed  Google Scholar 

  • Chon H, Lee S, Yoon SY, Lee EK, Chang SI, Choo J (2013) SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction Chem Commun (Camb) doi:10.1039/c3cc47850e

  • de Graauw M, Tijdens I, Cramer R, Corless S, Timms JF, van de Water B (2005) Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J Biol Chem 280:29885–29898. doi:10.1074/jbc.M412708200

    Article  CAS  PubMed  Google Scholar 

  • Deharo P et al. (2014) Fixed-dose aspirin-clopidogrel combination enhances compliance to aspirin after acute coronary syndrome Int J Cardiol doi:10.1016/j.ijcard.2013.12.194

  • Ebert MP et al (2005) Protective role of heat shock protein 27 in gastric mucosal injury. J Pathol 207:177–184. doi:10.1002/path.1815

    Article  CAS  PubMed  Google Scholar 

  • Ellis FP (1972) Mortality from heat illness and heat-aggravated illness in the United States. Environ Res 5:1–58

    Article  CAS  PubMed  Google Scholar 

  • Faiella L, Piaz FD, Bisio A, Tosco A, De Tommasi N (2012) A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes. Mol Bio Syst 8:2637–2644. doi:10.1039/c2mb25171j

    CAS  Google Scholar 

  • Gao Z et al (2013) Inhibition of heat-induced apoptosis in rat small intestine and IEC-6 cells through the AKT signaling pathway. BMC Vet Res 9:241. doi:10.1186/1746-6148-9-241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander JM, Martin JL, Belke DD, Scott BT, Swanson E, Krishnamoorthy V, Dillmann WH (2004) Overexpression of wild-type heat shock protein 27 and a nonphosphorylatable heat shock protein 27 mutant protects against ischemia/reperfusion injury in a transgenic mouse model. Circulation 110:3544–3552. doi:10.1161/01.CIR.0000148825.99184.50

    Article  CAS  PubMed  Google Scholar 

  • Javeed A, Hou Y, Duan K, Zhang B, Shen H, Cao Y, Zhao Y (2011) Aspirin significantly decreases the nonopsonic phagocytosis and immunogenicity of macrophages in mice. Inflamm Res 60:389–398. doi:10.1007/s00011-010-0283-4

    Article  CAS  PubMed  Google Scholar 

  • Kamboh AA, Hang SQ, Bakhetgul M, Zhu WY (2013) Effects of genistein and hesperidin on biomarkers of heat stress in broilers under persistent summer stress. Poult Sci 92:2411–2418. doi:10.3382/ps.2012-02960

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269:11274–11278

    CAS  PubMed  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782–2793

    Article  CAS  PubMed  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    Article  CAS  PubMed  Google Scholar 

  • Lappas GD, Karl IE, Hotchkiss RS (1994) Effect of ethanol and sodium arsenite on HSP-72 formation and on survival in a murine endotoxin model. Shock 2:34–39, discussion 40

    Article  CAS  PubMed  Google Scholar 

  • Lianos GD, Alexiou GA, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360:114–118. doi:10.1016/j.canlet.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191. doi:10.1146/annurev.bi.55.070186.005443

    Article  CAS  PubMed  Google Scholar 

  • Liu L et al (2007) Over-expression of heat shock protein 27 attenuates doxorubicin-induced cardiac dysfunction in mice. Eur J Heart Fail 9:762–769. doi:10.1016/j.ejheart.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  • Loktionova SA, Ilyinskaya OP, Gabai VL, Kabakov AE (1996) Distinct effects of heat shock and ATP depletion on distribution and isoform patterns of human Hsp27 in endothelial cells. FEBS Lett 392:100–104

    Article  CAS  PubMed  Google Scholar 

  • Ma X et al. (2013) Heat shock protein 27 attenuates neointima formation and accelerates reendothelialization after arterial injury and stent implantation: importance of vascular endothelial growth factor up-regulation FASEB journal: official publication of the Federation of American Societies for Experimental Biology doi:10.1096/fj.13-230417

  • Mahaffey KW et al. (2013) Association of aspirin dose and vorapaxar safety and efficacy in patients with non-ST-segment elevation acute coronary syndrome (from the TRACER Trial) the American journal of cardiology doi:10.1016/j.amjcard.2013.11.052

  • Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem 267:21987–21990

    CAS  PubMed  Google Scholar 

  • Patrono C, Garcia Rodriguez LA, Landolfi R, Baigent C (2005) Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med 353:2373–2383. doi:10.1056/NEJMra052717

    Article  CAS  PubMed  Google Scholar 

  • Piestun Y, Druyan S, Brake J, Yahav S (2013) Thermal manipulations during broiler incubation alter performance of broilers to 70 days of age. Poult Sci 92:1155–1163. doi:10.3382/ps.2012-02609

    Article  CAS  PubMed  Google Scholar 

  • Rhoads ML, Kim JW, Collier RJ, Crooker BA, Boisclair YR, Baumgard LH, Rhoads RP (2010) Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J Dairy Sci 93:170–179. doi:10.3168/jds.2009-2469

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SP, Villar J, Downey GP, Edelson JD, Slutsky AS (1994) Sodium arsenite induces heat shock protein-72 kDa expression in the lungs and protects rats against sepsis. Crit Care Med 22:922–929

    Article  CAS  PubMed  Google Scholar 

  • Rogalla T et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Montiel AA, Zentella-de-Pina M, Ventura-Gallegos JL, Frias-Gonzalez S, Lopez-Macay A, Zentella-Dehesa A (2013) HSP-72 accelerated expression in mononuclear cells induced in vivo by acetyl salicylic acid can be reproduced in vitro when combined with H2O2. PLoS One 8:e65449. doi:10.1371/journal.pone.0065449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan G, Ponmurugan P, Sathiyavathi M, Vadivukkarasi S, Sengottuvelu S (2013) Cardioprotective activity of Amaranthus viridis Linn: effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. Int J Cardiol 165:494–498. doi:10.1016/j.ijcard.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Scheers-Masters JR, Schootman M, Thach BT (2004) Heat stress and sudden infant death syndrome incidence: a United States population epidemiologic study. Pediatrics 113:e586–592

    Article  PubMed  Google Scholar 

  • Schweiger T et al (2015) Stromal expression of heat-shock protein 27 is associated with worse clinical outcome in patients with colorectal cancer lung metastases. PLoS One 10:e0120724. doi:10.1371/journal.pone.0120724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon DH, Glynn RJ, Levin R, Avorn J (2002) Nonsteroidal anti-inflammatory drug use and acute myocardial infarction. Arch Intern Med 162:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • N. R. St-Pierre* BC, and G. Schnitkey† (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86:E52–E77

  • Tang S et al (2013) Localization and expression of Hsp27 and alphaB-crystallin in rat primary myocardial cells during heat stress in vitro. PLoS One 8:e69066. doi:10.1371/journal.pone.0069066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu NC, Chen TH, Yang YC, Liao FT, Wang JC, Wang JJ (2013) N-acetylcysteine improves cardiac contractility and ameliorates myocardial injury in a rat model of lung ischemia and reperfusion injury. Transplant Proc 45:3550–3554. doi:10.1016/j.transproceed.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  • Wu D et al. (2015) Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression cell stress & chaperones doi:10.1007/s12192-015-0596-x

  • Yan J, Bao E, Yu J (2009) Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature. Res Vet Sci 86:533–538. doi:10.1016/j.rvsc.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Tang S, Bao E, Zhang M, Hao Q, Yue Z (2009) The effect of transportation on the expression of heat shock proteins and meat quality of M. longissimus dorsi in pigs. Meat Sci 83:474–478. doi:10.1016/j.meatsci.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  • Zeren G et al (2013) [Relation of heart-type fatty acid-binding protein with the degree and extent of atherosclerosis in patients with non-ST elevation acute coronary syndrome]. Turk Kardiyol Dern Ars 41:610–616. doi:10.5543/tkda.2013.26974

    Article  PubMed  Google Scholar 

  • Zhao W, Wisniewski M, Wang W, Liu J, Liu Y (2013) Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth World journal of microbiology & biotechnology doi:10.1007/s11274-013-1513-z

  • Zuo J, Baler R, Dahl G, Voellmy R (1994) Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol Cell Biol 14:7557–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31372403), the Natural Science Foundation of the Jiangsu Province (Grant No. BK20140107), the Postgraduate Student Research and Innovation Project of Jiangsu Province (KYLX15_0558), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Sino-German Agricultural Cooperation Project of the Federal Ministry of Food, the Agriculture and Consumer Production, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endong Bao.

Additional information

Di Wu and Miao Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Zhang, M., Xu, J. et al. In vitro evaluation of aspirin-induced HspB1 against heat stress damage in chicken myocardial cells. Cell Stress and Chaperones 21, 405–413 (2016). https://doi.org/10.1007/s12192-016-0666-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0666-8

Keywords

Navigation