Skip to main content
Log in

A novel small heat shock protein of Haliotis discus hannai: characterization, structure modeling, and expression profiles under environmental stresses

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Small heat shock proteins (sHsps) are a class of chaperones with low molecular weight, feathered by a C-terminal α-crystallin domain (ACD). They participate in reestablishing the stability of partially denatured proteins and therefore contribute to cellular homeostasis. In this work, we identified a sHsp homolog (designated as sHsp19) from Haliotis discus hannai, an economically important farmed mollusk in East Asia. sHsp19 possesses a sHsp hallmark domain, which exhibits the typical fold of ACD as revealed by a three-dimensional model constructed through an iterative threading assembly refinement method. The amino acid sequence sHsp19 shares low identities with any other known sHsps, with percentages below 35 %. Besides, sHsp19 shows relatively distant phylogenetic relationships with sHsps of various mollusks, including two other identified sHsps of abalone subspecies. qRT-PCR analysis indicated that the expression of sHsp19 occurred in multiple tissues. Upon exposure to thermal, oxidative, and multiple toxic metal stresses, the level of sHsp19 mRNA was rapidly elevated in a persistent fashion, with the maximum increase up to 170.58-, 405.84-, and 361.96-fold, respectively. These results indicate sHsp is a novel sHsp that possesses the distinguishing structural feature of sHsps but has remote homologies with known sHsps. It is likely to be important in stress adaptation of abalone and may be applied as a bioindicator for monitoring pollution or detrimental changes of environment in abalone culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM (2008) Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins alphaA- and alphaB-crystallin. J Mol Biol 382:812–824

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP (2000) sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol 48:280–288

    CAS  PubMed  Google Scholar 

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26

    Article  PubMed  Google Scholar 

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–424

    Article  CAS  PubMed  Google Scholar 

  • Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. BBA Proteins Proteomics 1854:291–319

    Article  CAS  PubMed  Google Scholar 

  • Bao YB, Wang Q, Liu HM, Lin ZH (2011) A small HSP gene of bloody clam (Tegillarca granosa) involved in the immune response against Vibrio parahaemolyticus and lipopolysaccharide. Fish Shellfish Immunol 30:729–733

    Article  CAS  PubMed  Google Scholar 

  • Chowdary TK, Raman B, Ramakrishna T, Rao CM (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 381:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R (2001) The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med 31:1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Surewicz WK (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett 369:321–325

    Article  CAS  PubMed  Google Scholar 

  • Edwards HV, Cameron RT, Baillie GS (2011) The emerging role of HSP20 as a multifunctional protective agent. Cell Signal 23:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Protein folding—molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307

    Article  CAS  PubMed  Google Scholar 

  • Lelj-Garolla B, Mauk AG (2006) Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281:8169–8174

    Article  CAS  PubMed  Google Scholar 

  • Leung PT, Wang Y, Mak SS, Ng WC, Leung KM (2011) Differential proteomic responses in hepatopancreas and adductor muscles of the green-lipped mussel Perna viridis to stresses induced by cadmium and hydrogen peroxide. Aquat Toxicol 105:49–61

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang L, Ning X, Chen A, Zhang L, Qin S, Wu H, Zhao J (2010) Identification of two small heat shock proteins with different response profile to cadmium and pathogen stresses in Venerupis philippinarum. Cell Stress Chaperones 15:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JQ, He QG, Sun H, Liu X (2012) Acclimation-dependent expression of heat shock protein 70 in Pacific abalone (Haliotis discus hannai Ino) and its acute response to thermal exposure. Chin J Oceanol Limnol 30:146–151

    Article  Google Scholar 

  • Li HJ, Liu SX, He CB, Gao XG, Yuan XT (2013) Identification of a small HSP gene from hard clam Meretrix meretrix and its potential as an environmental stress biomarker. Aquat Biol 18:243–252

    Article  CAS  Google Scholar 

  • Li JK, Wu XW, Tan J, Zhao RX, Deng LW, Liu XD (2015) Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock. Chin J Oceanol Limnol 33:919–927

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159

    Article  CAS  PubMed  Google Scholar 

  • Nie ZQ, Wang SP (2004) The status of abalone culture in China. J Shellfish Res 23:941–945

    Google Scholar 

  • Park EM, Kim YO, Nam BH, Kong HJ, Kim WJ, Lee SJ, Jee YJ, Kong IS, Choi TJ (2008) Cloning and expression analysis of a small HSP26 gene of Pacific abalone (Haliotis discus hannai). J Environ Biol 29:577–580

    CAS  PubMed  Google Scholar 

  • Qiu R, Liu X, Hu YH, Sun BG (2013a) Expression characterization and activity analysis of a cathepsin B from Pacific abalone Haliotis discus hannai. Fish Shellfish Immunol 34:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Qiu R, Sun BG, Fang SS, Sun L, Liu X (2013b) Identification of normalization factors for quantitative real-time RT-PCR analysis of gene expression in Pacific abalone Haliotis discus hannai. Chin J Oceanol Limnol 31:421–430

    Article  CAS  Google Scholar 

  • Rajaraman K, Raman B, Rao CM (1996) Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem 271:27595–27600

    Article  CAS  PubMed  Google Scholar 

  • Rajaraman K, Raman B, Ramakrishna T, Rao CM (2001) Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett 497:118–123

    Article  CAS  PubMed  Google Scholar 

  • Raman B, Rao CM (1997) Chaperone-like activity and temperature-induced structural changes of alpha-crystallin. J Biol Chem 272:23559–23564

    Article  CAS  PubMed  Google Scholar 

  • Raman B, Ramakrishna T, Rao CM (1995) Temperature-dependent chaperone-like activity of alpha-crystallin. Febs Lett 365:133–136

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Q, Whang I, Lee J (2012) Molecular and functional characterization of HdHSP20: a biomarker of environmental stresses in disk abalone Haliotis discus discus. Fish Shellfish Immunol 33:48–59

    Article  CAS  PubMed  Google Scholar 

  • You LP, Ning XX, Chen LL, Zhang LB, Zhao JM, Liu XL, Wu HF (2014) Expression profiles of two small heat shock proteins and antioxidant enzyme activity in Mytilus galloprovincialis exposed to cadmium at environmentally relevant concentrations. Chin J Oceanol Limnol 32:334–343

    Article  CAS  Google Scholar 

  • Zhang L, Wang LL, Song LS, Zhao JM, Qiu LM, Dong CH, Li FM, Zhang H, Yang GP (2010a) The involvement of HSP22 from bay scallop Argopecten irradians in response to heavy metal stress. Mol Biol Rep 37:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang LL, Zhao JM, Qiu LM, Song LS, Dong CH, Li FM (2010b) The responsive expression of heat shock protein 22 gene in zhikong scallop Chlamys farreri against a bacterial challenge. Aquac Res 41:257–266

    Article  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F et al (2012a) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Wang XH, Zhu HY, Kranias EG, Tang YL, Peng TQ, Chang J, Fan GC (2012b) Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS ONE 7(3), e32765. doi:10.1371/journal.pone.0032765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Lu Y, Li C, Zhang P, Su X, Li Y, Wang C, Li T (2013) A small heat shock protein (sHSP) from Sinonovacula constricta against heavy metals stresses. Fish Shellfish Immunol 34:1605–1610

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant of Taishan Scholar Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-hua Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Bg., Hu, Yh. A novel small heat shock protein of Haliotis discus hannai: characterization, structure modeling, and expression profiles under environmental stresses. Cell Stress and Chaperones 21, 583–591 (2016). https://doi.org/10.1007/s12192-016-0683-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0683-7

Keywords

Navigation