Skip to main content
Log in

Stable spatially inhomogeneous periodic solutions for a diffusive Leslie–Gower predator–prey model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The main objective of this thesis is to learn about the dynamics of a diffusive Leslie–Gower predator–prey system with functional response and time delay under homogeneous Neumann boundary conditions. By in-depth analyzing eigenvalues distribution, it proves that there are (diffusion-induced, delay-induced) Turing–Hopf bifurcations around positive equilibrium state. More than this, base on the foundation of the regular modality and the center manifold theory, It is responsible for establishing a precise formula, which is to determine the Turing–Hopf bifurcation property of a diffusive Leslie–Gower predator–prey system with functional response. After that, we applied the formula to a diffusive Leslie–Gower predator–prey system with Beddington–DeAngelis functional response and time delay integrally. Finally, the results have been verified and replenished by numerical simulation adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berryman, A.A.: The origins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992)

    Article  Google Scholar 

  2. Wollkind, J.D., Logan, J.A.: Temperature-dependent predator-prey mite ecosystem on apple tree foliage. J. Math. Biol. 6, 265–283 (1978)

    Article  Google Scholar 

  3. Wollkind, J.D., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees. Bull. Math. Biol. 50, 379–409 (1988)

    Article  MathSciNet  Google Scholar 

  4. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, NJ (1978)

    Google Scholar 

  5. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  Google Scholar 

  6. Li, Y., Xiao, D.: Bifurcations of a predator-prey system of Holling and Leslie types. Chaos Solitons Fractals 34, 606–620 (2007)

    Article  MathSciNet  Google Scholar 

  7. Artidi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  8. Song, Y., Zou, X.: Bifurcation analysis of a diffusive ratio-dependent predator-prey model. Nonlinear Dyn. 78, 49–70 (2014)

    Article  MathSciNet  Google Scholar 

  9. Song, Y., Peng, Y., Zou, X.: Persistence, stability and Hopf bifurcation in a diffusive ratio-dependent predator-prey model with delay. Int. J. Bifurc. Chaos 24, 1450093 (2014)

    Article  MathSciNet  Google Scholar 

  10. Shi, H., Li, Y.: Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response. Appl. Math. Comput. 250, 71–77 (2015)

    MathSciNet  Google Scholar 

  11. Zhou, J.: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response. Nonlinear Dyn. 81, 1535–1552 (2015)

    Article  MathSciNet  Google Scholar 

  12. Yang, W., Li, X.: Global asymptotical stability for a diffusive predator-prey model with ratio-dependent Holling type III functional response. Differ. Equ. Dyn. Syst. https://doi.org/10.1007/s12591-017-0370-x

  13. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Biosci. 236, 64–76 (2012)

    Article  MathSciNet  Google Scholar 

  14. Arditi, R., Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)

    Article  Google Scholar 

  15. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  Google Scholar 

  16. Li, B., Kuang, Y.: Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system. SIAM J. Appl. Math. 67, 1453–1464 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ruan, S., Tang, Y., Zhang, W.: Versal unfoldings of predator-prey systems with ratio-dependent functional response. J. Differ. Equ. 249, 1410–1435 (2010)

    Article  MathSciNet  Google Scholar 

  18. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  19. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  20. Han, R., Dai, B., Wang, L.: Delay induced spatiotempopal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Math. Biosci. Eng. 15(3), 595–627 (2018)

    Article  MathSciNet  Google Scholar 

  21. Du, P., Duan, C., Liao, X.: Dynamics behaviors of a reaction-diffusion predator-prey system with Beddington-DeAngelis functional response and delay. Appl. Math. 5, 843–851 (2014)

    Article  Google Scholar 

  22. Hu, G., Li, X., Wang, Y.: Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system. Nonlinear Dyn. 81, 265–275 (2015)

    Article  MathSciNet  Google Scholar 

  23. Fan, M., Kuang, Y.: Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)

    Article  MathSciNet  Google Scholar 

  24. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1989)

    Article  Google Scholar 

  25. Li, H.: Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response. Comput. Math. Appl. 68, 693–705 (2014)

    Article  MathSciNet  Google Scholar 

  26. Ali, N., Jazar, M.: Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. J. Appl. Math. Comput. 43, 271–293 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zhou, J.: Positive solutions for a modified Leslie-Gower prey-predator model with Crowley-Martin functional responses. Nonlinear Differ. Equ. Appl. 21, 621–661 (2014)

    Article  MathSciNet  Google Scholar 

  28. Chen, S., Shi, J.: Global attractivity of equilibrium in Gierer-Meinhardt system with activator production saturation and gene expression time delays. Nonlinear Anal. RWA 14, 1871–1886 (2013)

    Article  MathSciNet  Google Scholar 

  29. Cao, X., Jiang, W.: Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response. Nonlinear Anal. RWA 43, 428–450 (2018)

    Article  MathSciNet  Google Scholar 

  30. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 285, 838–838 (1999)

    Google Scholar 

  31. Murray, J.D.: Mathematical Biology II. Springer-Verlag, Heidelberg (2002)

    Book  Google Scholar 

  32. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996)

    Book  Google Scholar 

  33. Hsu, S.B., Huang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  Google Scholar 

  34. Yi, F., Wei, J., Shi, J.: Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  Google Scholar 

  35. Shi, H., Li, W., Lin, G.: Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response. Nonlinear Anal. RWA 11, 3711–3721 (2010)

    Article  MathSciNet  Google Scholar 

  36. Yang, W.: Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response. Nonlinear Anal. RWA 14, 1323–1330 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zhang, C., Ke, A., Zheng, B.: Patterns of interaction of coupled reaction-diffusion systems of the FitzHugh-Nagumo type. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-05065-8

  38. Liu, B., Wu, R., Chen, L.: Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model. Chaos 28, 113118 (2018)

    Article  MathSciNet  Google Scholar 

  39. Xu, X., Wei, J.: Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discret. Contin. Dyn. Syst. Ser. B 23(2), 765–783 (2018)

    MathSciNet  Google Scholar 

  40. Chen, X., Jiang, W.: Turing-Hopf bifurcation and multi-stable spatio-temporal patterns in the Lengyel-Epstein system. Nonlinear Anal. RWA 49, 386–404 (2019)

    Article  MathSciNet  Google Scholar 

  41. Song, Y., Zhang, T., Peng, Y.: Turing-Hopf bifurcation in the reaction-diffusion equations and its applications. Commun. Nonlinear Sci. Numer. Simul. 33, 229–258 (2016)

    Article  MathSciNet  Google Scholar 

  42. Song, Y., Jiang, H., Liu, Q., Yuan, Y.: Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  Google Scholar 

  43. Ruan, S.: On nonlinear dynamics of predator-prey models with discrete delay. Math. Model. Nat. Phenom. 4(2), 140–188 (2009)

    Article  MathSciNet  Google Scholar 

  44. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delay. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    Article  MathSciNet  Google Scholar 

  45. Faria, T.: Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J. Math. Anal. Appl. 254, 433–463 (2001)

    Article  MathSciNet  Google Scholar 

  46. Chen, S., Shi, J., Wei, J.: Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system. Int. J. Bifurc. Chaos 22, 1250061 (2012)

    Article  MathSciNet  Google Scholar 

  47. Lu, Z., Liu, X.: Analysis of a predator-prey model with modified Holling-Tanner functional response and time delay. Nonlinear Anal. RWA 9, 641–650 (2008)

    Article  MathSciNet  Google Scholar 

  48. Zhang, J.: Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay. Appl. Math. Model. 36, 1219–1231 (2012)

    Article  MathSciNet  Google Scholar 

  49. Yang, R., Zhang, C.: Dynamics in a diffusive predator-prey system with a constant prey refuge and delay. Nonlinear Anal. RWA 31, 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  50. Jiang, W., Wang, H., Cao, X.: Turing Instability and Turing-Hopf Bifurcation in Diffusive Schnakenberg Systems with Gene Expression Time Delay. J. Dyn. Differ. Equ. (2019). https://doi.org/10.1007/s10884-018-9702-y

    Article  MathSciNet  Google Scholar 

  51. Song, Y., Jiang, H., Yuan, Y.: Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model. J. Appl. Anal. Comput. (2019). https://doi.org/10.11948/2156-907X.20190015

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No.11701208), the key Projects of Natural Science Research in Colleges and Universities in Anhui Province (No.2022AH051948, No.2023AH051363), the young Backbone Teachers Overseas Study and Research Funding Project in Department of Education in Anhui Province(No.JWFX2023035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Jiang.

Ethics declarations

Conflict of interest

The authors are seriously and solemnly declaring that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H. Stable spatially inhomogeneous periodic solutions for a diffusive Leslie–Gower predator–prey model. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02018-2

Keywords

Navigation