Skip to main content

Advertisement

Log in

Global stability of a diffusive HCV infections epidemic model with nonlinear incidence

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a diffusive HCV infections epidemic model with nonlinear incidence rate and analyze the stability of the two kinds of equilibria. By constructing various Lyapunov functions, we prove that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number \(R_{0}< 1\) and the endemic equilibrium is globally asymptotically stable when the basic reproduction number \(R_{0} >1\). Finally, some numerical simulations are given to confirm the theoretical analysis. The results show that when other parameters are the same, the linear infection rate and the non-linear infection rate have different effects on disease spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen, S.L., Morgan, T.R.: The natural history of hepatitis C virus (HCV) infection. Int. J. Med. Sci. 3(2), 47–52 (2006)

    Article  Google Scholar 

  2. Lavanchy, D.: The global burden of hepatitis C, Liver international?: official. J. Int. Assoc. Stud. Liver 29(s1), 74–81 (2009)

    Article  Google Scholar 

  3. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Character 115, 700–721 (1927)

    MATH  Google Scholar 

  4. Slama, H., Hussein, A., El-Bedwhey, N.A., Selim, M.M.: An approximate probabilistic solution of a random SIR-type epidemiological model using RVT technique. Appl. Math. Comput. 361, 144–156 (2019)

    Article  MathSciNet  Google Scholar 

  5. Yang, J., Wang, X.: Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion. Appl. Math. Comput. 360, 236–254 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Long, Y., Wang, L.: Global dynamics of a delayed two-patch discrete SIR disease model. Commun. Nonlinear Sci. 83, 105117 (2020)

    Article  MathSciNet  Google Scholar 

  7. Ramos, A.B.M., Schimit, P.H.T.: Disease spreading on populations structured by groups. Appl. Math. Comput. 353, 265–273 (2019)

    Article  MathSciNet  Google Scholar 

  8. Zhang, F., Zhao, T., Liu, H., Chen, Y.: Backward bifurcation in a stage-structured epidemic model. Appl. Math. Lett. 89, 85–90 (2019)

    Article  MathSciNet  Google Scholar 

  9. Yang, J., Jin, Z., Xu, F.: Threshold dynamics of an age-space structured SIR model on heterogeneous environment. Appl. Math. Lett. 96, 69–74 (2019)

    Article  MathSciNet  Google Scholar 

  10. Zhang, W.: Analysis of an in-host tuberculosis model for disease control. Appl. Math. Lett. 99, 105983 (2020)

    Article  MathSciNet  Google Scholar 

  11. Cui, R., Lou, Y.: A spatial SIS model in advective heterogeneous environments. J. Diff. Eq. 261, 3305–3343 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bentaleb, D., Amine, S.: Lyapunov function and global stability for a two-strain SEIR model with bilinear and non-monotone incidence. Int. J. Biomath. 12(2), 1950021 (2019)

    Article  MathSciNet  Google Scholar 

  13. Okuonghae, D.: Lyapunov functions and global properties of some tuberculosis models. J. Appl. Math. Comput. 48, 421–439 (2015)

    Article  MathSciNet  Google Scholar 

  14. Yang, J., Xu, F.: Global stability of two SIS epidemic mean-field models on complex networks: Lyapunov functional approach. J. Franklin Instit. 355, 6763–6779 (2018)

    Article  MathSciNet  Google Scholar 

  15. Andrei, M.A.V.K.: Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Math. Biosci. Eng. 10, 369–78 (2013)

    Article  MathSciNet  Google Scholar 

  16. Perelson, A.S., Guedj, J.: Modelling hepatitis C therapy-predicting effects of treatment. Nature Rev. Gastroenterol Hepatol. 12(8), 437–45 (2015)

    Article  Google Scholar 

  17. Martcheva, M., Castillo-Chavez, C.: Diseases with chronic stage in a population with varying size. Math. Biosci. 182(1), 1–25 (2003)

    Article  MathSciNet  Google Scholar 

  18. Yuan, J., Yang, Z.: Global dynamics of an SEI model with acute and chronic stages. J. Comput. Appl. Math. 213(2), 465–476 (2007)

    Article  MathSciNet  Google Scholar 

  19. World Health Organization, Hepatitis C (2019). www.who.int/news-room/fact-sheets/detail/hepatitis-c

  20. Cui, J., Zhao, S., Guo, S., Bai, Y., Wang, X., Chen, T.: Global dynamics of an epidemiological model with acute and chronic HCV infections. Appl. Math. Lett. 103, 106203 (2020)

    Article  MathSciNet  Google Scholar 

  21. Derrick, W., van den Driessche, P.: A disease transmission model in a nonconstant population. J. Math. Biol. 31, 495–512 (1993)

    Article  MathSciNet  Google Scholar 

  22. Lizana, M., Rivero, J.: Multiparametric bifurcations for a model in epidemiology. J. Math. Biol. 35, 21–36 (1996)

    Article  MathSciNet  Google Scholar 

  23. Liu, J., Peng, B., Zhang, T.: Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence. Appl. Math. Lett. 39, 60–66 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ma, L., Luo, Y., Li, S.: Bifurcation analysis of a two-species diffusive model. Appl. Math. Lett. 96, 236–242 (2019)

    Article  MathSciNet  Google Scholar 

  25. Chen, X., Cui, R.: Global stability in a diffusive cholera epidemic model with nonlinear incidence. Appl. Math. Lett. 111, 106596 (2021)

    Article  MathSciNet  Google Scholar 

  26. Duan, L., Xu, Z.: A note on the dynamics analysis of a diffusive cholera epidemic model with nonlinear incidence rate. Appl. Math. Lett. 106, 106356 (2020)

    Article  MathSciNet  Google Scholar 

  27. Cai, Y., Wang, K., Wang, W.: Global transmission dynamics of a Zika virus model. Appl. Math. Lett. 92, 190–195 (2019)

    Article  MathSciNet  Google Scholar 

  28. Han, S., Lei, C.: Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence. Appl. Math. Lett. 98, 114–120 (2019)

    Article  MathSciNet  Google Scholar 

  29. Gao, X., Ishag, S., Fu, S., Li, W., Wang, W.: Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting. Nonlinear Anal-Real. 51, 102962 (2020)

    Article  MathSciNet  Google Scholar 

  30. Du, Z., Peng, R.: A priori \(L^{\infty }\) estimates for solutions of a class of reaction-diffusion systems. J. Math. Biol. 72, 1429–39 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Cao, J.: Global dynamics of a network epidemic model for waterborne diseases spread. Appl. Math. Comput. 237, 474–488 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Cao, J., Wang, Y., Alofi, A., Al-Mazrooei, A., Elaiw, A.: Global stability of an epidemic model with carrier state in heterogeneous networks. Ima J. Appl. Math. 80(4), 1025–1048 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (11672074), and the Natural Science Foundation of Fujian Province (2018J01655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Yang, W. Global stability of a diffusive HCV infections epidemic model with nonlinear incidence. J. Appl. Math. Comput. 68, 2685–2697 (2022). https://doi.org/10.1007/s12190-021-01637-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01637-3

Keywords

Navigation