Skip to main content
Log in

Iterative regularization methods with new stepsize rules for solving variational inclusions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The paper concerns with three iterative regularization methods for solving a variational inclusion problem of the sum of two operators, the one is maximally monotone and the another is monotone and Lipschitz continuous, in a Hilbert space. We first describe how to incorporate regularization terms in the methods of forward-backward types, and then establish the strong convergence of the resulting methods. With several new stepsize rules considered, the methods can work with or without knowing previously the Lipschitz constant of cost operator. Unlike known hybrid methods, the strong convergence of the proposed methods comes from the regularization technique. Several applications to signal recovery problems and optimal control problems together with numerical experiments are also presented in this paper. Our numerical results have illustrated the fast convergence and computational effectiveness of the new methods over known hybrid methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bakushinskii, A.B.: Methods for the solution of monotone variational inequalities that are based on the principle of iterative regularization. Zh. Vychisl. Mat. Mat. Fiz. 17, 1350–1362 (1977)

    MathSciNet  Google Scholar 

  2. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Brézis, H., Chapitre, I.I.: Operateurs maximaux monotones. North-Holland Math. Stud. 5, 19–51 (1973)

    Article  Google Scholar 

  4. Briceño-Arias, L.M., Combettes, P.L.: A monotone \(+\) skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)

    Article  MathSciNet  Google Scholar 

  5. Censor, Y., Elfving, T.: A multi-projection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  6. Cevher, V., Vu, B.C.: A reflected forward-backward-forward splitting method for monotone inclusions involving Lipschitzian operators. Set-Valued Var. Anal. (2020). https://doi.org/10.1007/s11228-020-00542-4

    Article  MATH  Google Scholar 

  7. Combettes, P.L., Wajs, R.: Signal recovery by proximal forward–backward splitting. Multiscale Model Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  9. Cruz, J.Y.B., Nghia, T.T.A.: On the convergence of the forward-backward splitting method with linesearches. Optim. Method Softw. 31, 1209–1238 (2016)

    Article  MathSciNet  Google Scholar 

  10. Davis, D., Yin, W.T.: A three-operator splitting scheme and its optimization applications. Set Valued Var. Anal. 25, 829–858 (2017)

    Article  MathSciNet  Google Scholar 

  11. Hartman, P., Stampacchia, G.: On some non-linear elliptic differential functional equations. Acta Math. 115, 271–310 (1966)

    Article  MathSciNet  Google Scholar 

  12. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified forward-backward splitting method for variational inclusions. 4OR Q. J. Oper. Res. (2020). https://doi.org/10.1007/s10288-020-00440-3

    Article  MATH  Google Scholar 

  13. Hieu, D.V., Vy, L.V., Quy, P.K.: Three-operator splitting algorithm for a class of variational inclusion problems. Bull. Iran. Math. Soc. 46, 1055–1071 (2020)

    Article  MathSciNet  Google Scholar 

  14. Hieu, D.V., Cho, Y.J., Xiao, Y.-B., Kumam, P.: Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces. Vietnam J. Math. (2020). https://doi.org/10.1007/s10013-020-00447-7

    Article  MATH  Google Scholar 

  15. Hieu, D.V., Cholamjiak, P.: Modified extragradient method with Bregman distance for variational inequalities. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1757078

    Article  Google Scholar 

  16. Hieu, D.V., Reich, S.: Two Bregman projection methods for solving variational inequalities. Optimization (2020). https://doi.org/10.1080/02331934.2020.1836634

    Article  Google Scholar 

  17. Hieu, D.V., Strodiot, J.J., Muu, L.D.: An explicit extragradient algorithm for solving variational inequalities. J. Optim. Theory Appl. 185, 476–503 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified extragradient-like algorithms with new stepsizes for variational inequalities. Comput. Optim. Appl. 73, 913–932 (2019)

    Article  MathSciNet  Google Scholar 

  19. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  20. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7, 1193–1214 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  22. Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without cocoercivity (2018). https://arxiv.org/abs/1808.04162

  23. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  Google Scholar 

  24. Ryu, E.K., Vu, B.C.: Finding the Forward-Douglas-Rachford-Forward method. J. Optim. Theory Appl. 184, 858–876 (2020)

    Article  MathSciNet  Google Scholar 

  25. Semenov, V.V.: Inertial hybrid splitting methods for operator inclusion problems. Cybern. Syst. Anal. 54, 936–943 (2018)

    Article  Google Scholar 

  26. Seydenschwanz, M.: Convergence results for the discrete regularization of linear-quadratic control problems with bang-bang solutions. Comput. Optim. Appl. 629, 731–760 (2015)

    Article  MathSciNet  Google Scholar 

  27. Shehu, Y.: Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces. Res. Math. 74(138), 1–24 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)

    Google Scholar 

  29. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)

    Article  MathSciNet  Google Scholar 

  30. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  31. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  33. Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360–378 (2011)

    Article  MathSciNet  Google Scholar 

  34. Xu, H.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Editor and anonymous reviewers for their constructive comments which helped to improve the quality and presentation of this paper. The research of first and third authors is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2020.06. The research of last author is supported by the Namur Institute for Complex Systems, naXys, University of Namur, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Van Hieu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hieu, D., Anh, P.K., Muu, L.D. et al. Iterative regularization methods with new stepsize rules for solving variational inclusions. J. Appl. Math. Comput. 68, 571–599 (2022). https://doi.org/10.1007/s12190-021-01534-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01534-9

Keywords

Mathematics Subject Classification

Navigation