Skip to main content
Log in

Influence of Allee effect in prey and hunting cooperation in predator with Holling type-III functional response

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Cooperative hunting is a widespread phenomenon in the predator population which promotes the predation and the coexistence of the prey-predator system. On the other hand, the Allee effect among prey may drive the system to instability. In this work, we consider a prey-predator model with Type-III functional response involving the hunting cooperation in predator and Allee effect in the growth rate of the prey population. Here our aim mainly is to demonstrate the impact of both the Allee effect and hunting cooperation on the system dynamics. Mathematically our analysis primarily focuses on the stability of coexisting equilibrium points and all possible bifurcations that the system may exhibit. We have observed transcritical bifurcation, saddle-node bifurcation, Hopf-bifurcation, Bogdanov-Takens bifurcation and SN-TC bifurcation point respectively in the course of studying the global dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kashif, A.S., Peet, A.B., Peacock-Lopez, E.: Complex dynamics in a modified macarthur–rosenzweig model with predator paring. J. Biol. Syst. 20(01), 87–108 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alves, M.T., Hilker, F.M.: Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017)

    Article  MathSciNet  Google Scholar 

  3. Banerjee, Swarnendu, Sha, Amar, Chattopadhyay, Joydev: Cooperative predation on mutualistic prey communities. J. Theor. Biol. 490, 110156 (2020)

    Article  MathSciNet  Google Scholar 

  4. Berec, Luděk: Impacts of foraging facilitation among predators on predator-prey dynamics. Bull. Math. Biol. 72(1), 94–121 (2010)

    Article  MathSciNet  Google Scholar 

  5. Berec, Luděk, Angulo, Elena, Courchamp, Franck: Multiple allee effects and population management. Trends Ecol. & Evol. 22(4), 185–191 (2007)

    Article  Google Scholar 

  6. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    Article  Google Scholar 

  7. Dennis, Brian: Allee effects: population growth, critical density, and the chance of extinction. Nat. Resour. Model. 3(4), 481–538 (1989)

    Article  MathSciNet  Google Scholar 

  8. Donohue, J.G., Piiroinen, P.T.: Normal-form analysis of the cusp-transcritical interaction: applications in population dynamics. Nonlinear Dyn. 100, 1–13 (2020)

    Article  Google Scholar 

  9. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology, vol. 57. Marcel Dekker Incorporated, New York (1980)

    MATH  Google Scholar 

  10. Hastings, A.: Population Biology: Concepts and Models. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  11. Hsu, Sze-Bi: On global stability of a predator-prey system. Math. Biosci. 39(1–2), 1–10 (1978)

    Article  MathSciNet  Google Scholar 

  12. Jang, S.R.J., Zhang, W., Larriva, V.: Cooperative hunting in a predator-prey system with allee effects in the prey. Nat. Resour. Model. 31(4), e12194 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kot, Mark: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  14. Kuang, Yang, Freedman, H.I.: Uniqueness of limit cycles in gause-type models of predator-prey systems. Math. Biosci. 88(1), 67–84 (1988)

    Article  MathSciNet  Google Scholar 

  15. Lotka, J.: A natural population norm. i. J. Wash. Acad. Sci. 3(9), 241–248 (1913)

    Google Scholar 

  16. Pal, Saheb, Pal, Nikhil, Chattopadhyay, Joydev: Hunting cooperation in a discrete-time predator-prey system. Int. J. Bifurc. Chaos 28(07), 1850083 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pal, Saheb, Pal, Nikhil, Samanta, Sudip, Chattopadhyay, Joydev: Effect of hunting cooperation and fear in a predator-prey model. Ecol. Complex. 39, 100770 (2019)

    Article  Google Scholar 

  18. Pal, Saheb, Pal, Nikhil, Samanta, Sudip, Chattopadhyay, Joydev: Fear effect in prey and hunting cooperation among predators in a leslie-gower model. Math. Biosci. Eng 16(5), 5146–5179 (2019)

    Article  MathSciNet  Google Scholar 

  19. Perko, L.: Differential Equations and Dynamical Systems. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  20. Přibylová, Lenka, Berec, Luděk: Predator interference and stability of predator-prey dynamics. J. Math. Biol. 71(2), 301–323 (2015)

    Article  MathSciNet  Google Scholar 

  21. Rocha, J.L., Fournier-Prunaret, D., Abdel-Kaddous, T.: Strong and weak allee effects and chaotic dynamics in richards’ growths. Discret. Contin. Dyn. Syst.-B 18(9), 2397 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Ryu, Kimun, Ko, Wonlyul: Asymptotic behavior of positive solutions to a predator-prey elliptic system with strong hunting cooperation in predators. Phys. A: Stat. Mech. Appl 531, 121726 (2019)

    Article  MathSciNet  Google Scholar 

  23. Saputra, K.V.I., Veen, L.V., Quispel, G.R.W.: The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete Contin. Dyn. Syst. Ser. B 14(01), 233–250 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Sen, D., Ghorai, S., Banerjee, M.: Allee effect in prey versus hunting cooperation on predator-enhancement of stable coexistence. Int. J. Bifur. Chaos 29(06), 1950081 (2019)

    Article  MathSciNet  Google Scholar 

  25. Sen, Moitri, Banerjee, Malay, Morozov, Andrew: Bifurcation analysis of a ratio-dependent prey-predator model with the allee effect. Ecol. Complex. 11, 12–27 (2012)

    Article  Google Scholar 

  26. Sotomayor, Jorge.: Generic bifurcations of dynamical systems. In Dynamical systems, pages 561–582. Elsevier (1973)

  27. Stephens, P.A., Sutherland, W.J.: Consequences of the allee effect for behaviour, ecology and conservation. Trends Ecol. & Evol. 14(10), 401–405 (1999)

    Article  Google Scholar 

  28. Terry, A.J.: Predator-prey models with component allee effect for predator reproduction. J. Math. Biol. 71(6–7), 1325–1352 (2015)

    Article  MathSciNet  Google Scholar 

  29. Turchin, Peter: Complex Population Dynamics: A Theoretical/Empirical Synthesis, vol. 35. Princeton University Press, New Jersey (2003)

    MATH  Google Scholar 

  30. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature Publishing Group, Berlin (1926)

    MATH  Google Scholar 

  31. Warder Clyde Allee: Animal aggregations: a study in general sociology. The University of Chicago Press (1931)

  32. Zhang, Jun, Zhang, Weinian: Dynamics of a predator-prey model with hunting cooperation and allee effects in predators. Int. J. Bifur. Chaos 30(14), 2050199 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Krishnanand Vishwakarma is supported by research fellowship from Ministry of Human Resource Development (MHRD), Government of India [F.No.17-2/2014 TS-1]. The work of Dr. Moitri Sen is partially funded by the MATRICS project with ref. no. MTR/2018/001283 of SERB, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moitri Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1.

corresponding to the bifurcation diagram given in Fig. 2

Fig. 6
figure 6

Phase portrait diagrams corresponding to Fig.(2) in different region from \({R_1\rightarrow R_7}\) respectively with the fixed parameter values are \(\beta =0.2, \eta =1, h=0.5\) for the various choice of \(\sigma \) and \(\alpha \) is a\(\sigma =1.1, \alpha =5.0\),b \(\sigma =0.716, \alpha =6.23\), c \(\sigma =0.57, \alpha =2.38\), d \(\sigma =0.75, \alpha =9.44\), e \(\sigma =0.72, \alpha =16.91\), f \(\sigma =0.56, \alpha =14.18\), g \(\sigma =0.02, \alpha =8.48\)

Appendix A2.

corresponding to the bifurcation diagram given in Fig. 3

Fig. 7
figure 7

Phase portrait diagrams corresponding to Fig.(3) in different region from \({R_1\rightarrow R_6}\) respectively with the fixed parameter values are \(\beta =-0.05, \eta =1, h=0.5\) for the various choice of \(\sigma \) and \(\alpha \) are a \(\sigma =0.80, \alpha =2.16\), b \(\sigma =0.719, \alpha =5.23\), c \(\sigma =0.544, \alpha =2.344\), d \(\sigma =0.76, \alpha =9.47\), e \(\sigma =0.74, \alpha =12.57\), f \(\sigma =0.587, \alpha =11.96\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, K., Sen, M. Influence of Allee effect in prey and hunting cooperation in predator with Holling type-III functional response. J. Appl. Math. Comput. 68, 249–269 (2022). https://doi.org/10.1007/s12190-021-01520-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01520-1

Keywords

Mathematics Subject Classification

Navigation