Skip to main content
Log in

Existence and uniqueness of solutions to the damped Navier–Stokes equations with Navier boundary conditions for three dimensional incompressible fluid

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, we study the solutions of the damped Navier–Stokes equation with the Navier slip boundary condition in a bounded domain \(\Omega \) in \({\mathbb {R}}^3\) with sufficiently smooth boundary. We employ the Galerkin method to approximate the solutions of the damped Navier–Stokes equations with the Navier-slip boundary conditions. The existence of the solutions is global for \(\beta \ge 1\). We also established the regularity of the solutions for \(\beta \ge 3\), and the uniqueness of the solutions for \(\beta \ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Rejaiba, A.: Navier–Stokes equations with Navier boundary condition. Math. Methods Appl. Sci. 39(17), 5091–5112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S.N., de Oliveira, H.B.: Navier–Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time. RIMS Kôkyûroku Bessatsu, B 1, 21–41 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., de Oliveira, H.B.: The Navier–Stokes problem modified by an absorption term. Appl. Anal. 89(12), 1805–1825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. da Beirão Veiga, H., Crispo, F.: Sharp inviscid limit results under Navier type boundary conditions: an \(L^p\) theory. J. Math. Fluid Mech 12(3), 397–411 (2010)

    MathSciNet  MATH  Google Scholar 

  5. da Veiga, Beirão, Crispo, F.: The 3-D inviscid limit result under slip boundary conditions, A negative answer. J. Math. Fluid Mech. 14(1), 55–59 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X., Jiu, Q.: Weak and strong solutions for the incompressible Navier–Stokes equations with damping. J. Math. Anal. Appl. 343, 799–809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clopeau, T., Mikelić, A., Robert, R.: On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions. Nonlinearity 11(6), 1625–1636 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jager, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kashiwabara, T.: On a strong solution of the non-stationary Navier–Stokes equations under slip or leak boundary conditions of friction type. J. Differ. Equ. 254(2), 756–778 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kelliher, J.P.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, J.L.: Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  13. Lopes Filho, M.C., Nussenzveig Lopes, H.J., Planas, G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36(4), 1130–1141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matthews, M.T., Hill, J.M.: Flow around nanospheres and nanocylinders. Q. J. Mech. Appl. Math. 59, 191–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matthews, M.T., Hill, J.M.: Newtonian flow with nonlinear Navier boundary condition. Acta Mech. 191, 195–217 (2007)

    Article  MATH  Google Scholar 

  16. Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc. London 170, 231–256 (1879)

    Article  MATH  Google Scholar 

  17. Navier, C.L.M.H.: Sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr. 6, 389–440 (1827)

    Google Scholar 

  18. Necas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  19. Pal, S., Haloi, R.: On Solution to the Navier–Stokes equations with Navier-slip boundary condition for three dimensional incompressible fluid, Acta Math. Sci. Ser. B Engl. Ed. 39(6), 1628–1638 (2019)

    MathSciNet  Google Scholar 

  20. Sohr, H.: The Navier–Stokes Equations An Elementary Functional Analytic Approach Modern Birkhäuser Classics. Springer, Basel (2001)

    MATH  Google Scholar 

  21. Song, X., Hou, Y.: Attractors for the three dimensional incompressible Navier–Stokes equations with damping. Discret. Contin. Dyn. Syst. 31, 239–252 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, X., Hou, Y.: Uniform attractors for three dimensional incompressible Navier–Stokes equation with nonlinear damping. J. Math. Anal. Appl. 422, 337–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  24. Xiao, Y.L., Xin, Z.P.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60(7), 1027–1055 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yamazaki, K.: Stochastic Lagrangian formulations for damped Navier–Stokes equations and boussinesq system, with applications. Commun. Stoch. Anal 12, 447–471 (2018)

    MathSciNet  Google Scholar 

  26. Zajaczkowski, W.M.: Global special regular solutions to the Navier–Stokes equations in a cylindrical domain without the axis of symmetry. Topol. Methods Nonlinear Anal. 24(1), 69–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Z., Wu, X., Lu, M.: On the uniqueness of strong solution to the incompressible Navier–Stokes equation with damping. J. Math. Anal. Appl. 377, 414–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Y.: Regularity and uniqueness for the 3D incompressible Navier–Stokes equations with damping. Appl. Math. Lett. 25, 1822–1825 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledge the Grant from NBHM (Grant No. 02011/9/2019 NBHM(R.P.)/R  and   D II/1324) and the second author is supported by the DST MATRICS (Grant No. SERB/F/12082/2018-2019). The authors thank the editor and anonymous reviewers whose valuable and insightful comments have helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Haloi, R. Existence and uniqueness of solutions to the damped Navier–Stokes equations with Navier boundary conditions for three dimensional incompressible fluid. J. Appl. Math. Comput. 66, 307–325 (2021). https://doi.org/10.1007/s12190-020-01437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01437-1

Keywords

Mathematics Subject Classification

Navigation