Skip to main content
Log in

Newtonian flow with nonlinear Navier boundary condition

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The generalized nonlinear Navier boundary condition advocated by Thompson and Troian in the journal Nature, and motivated from molecular dynamical simulations, is applied to the conventional continuum mechanical description of fluid flow for three simple pressure-driven flows through a pipe, a channel and an annulus, with a view to examining possible non-uniqueness arising from the nonlinear nature of the boundary condition. For the pipe and the channel it is shown that the results with the nonlinear Navier boundary condition may be obtained from a pseudo linear Navier boundary condition but with a modified slip length. For the annulus, two sets of physically acceptable solutions are obtained corresponding to the chosen sign of the normal derivative of the velocity at each solid boundary. Closer examination reveals that although the generalized Navier boundary condition is highly nonlinear, in terms of the assumed form of solution the integration constants obtained are still unique for the three simple pressure-driven flows presented here, provided that care is taken in its application and noting that the multiplicity of solutions obtained for the annulus arise as a consequence of adopting different signs for the normal derivatives of velocity at the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Gad-el-Hak (1999) ArticleTitleThe fluid mechanics of microdevices – the Freeman scholar lecture J. Fluids Engng 121 5–33

    Google Scholar 

  • S. Granick (1991) ArticleTitleMotions and relaxations of confined liquids Science 253 1374–1379 Occurrence Handle10.1126/science.253.5026.1374

    Article  Google Scholar 

  • S. Granick (1999) ArticleTitleSoft matter in a tight spot Phys. Today 52 26–31

    Google Scholar 

  • B. Bhushan J. N. Israelachvili U. Landman (1995) ArticleTitleA nanotribology: friction, wear and lubrication at the atomic scale Nature 374 607–616 Occurrence Handle10.1038/374607a0

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics. Cambridge University Press 1932.

  • Batchelor, G. K.: An introduction to fluid dynamics. Cambridge University Press 2000.

  • Slattery, J. C.: Advanced transport phenomena. Cambridge University Press 1999.

  • R. Pit H. Hervet L. Léger (1999) ArticleTitleFriction and slip of a simple liquid at a solid surface Tribol. Lett. 7 147–152 Occurrence Handle10.1023/A:1019161101812

    Article  Google Scholar 

  • R. Pit H. Hervet L. Léger (2000) ArticleTitleDirect experimental evidence of slip in hexadecane: solid interfaces Phys. Rev. Lett. 85 980–983 Occurrence Handle10.1103/PhysRevLett.85.980

    Article  Google Scholar 

  • V. S. J. Craig C. Neto D. R. M. Williams (2001) ArticleTitleShear-dependent boundary slip in an aqueous Newtonian liquid Phys. Rev. Lett 87 054504 Occurrence Handle10.1103/PhysRevLett.87.054504

    Article  Google Scholar 

  • Y. Zhu S. Granick (2001) ArticleTitleRate-dependent slip of Newtonian liquid at smooth surfaces Phys. Rev. Lett 87 096105 Occurrence Handle10.1103/PhysRevLett.87.096105

    Article  Google Scholar 

  • Y. Zhu S. Granick (2002) ArticleTitleLimits of the hydrodynamic no-slip boundary condition Phys. Rev. Lett 88 106102 Occurrence Handle10.1103/PhysRevLett.88.106102

    Article  Google Scholar 

  • Y. Zhu S. Granick (2002) ArticleTitleNo-slip boundary condition switches to partial slip when fluid contains surfactant Langmuir 18 10058–10063 Occurrence Handle10.1021/la026016f

    Article  Google Scholar 

  • D. C. Tretheway C. D. Meinhart (2002) ArticleTitleApparent fluid slip at hydrophobic microchannel walls Phys. Fluids 14 L9–L12 Occurrence Handle10.1063/1.1432696

    Article  Google Scholar 

  • M. Gad-el-Hak (2004) ArticleTitleTransport phenomena in microdevices ZAMM 84 494–498 Occurrence Handle02093912 Occurrence Handle10.1002/zamm.200310118

    Article  MATH  Google Scholar 

  • V. E. B. Dussan (1976) ArticleTitleThe moving contact line: the slip boundary condition J. Fluid Mech. 77 665–684 Occurrence Handle0341.76010 Occurrence Handle10.1017/S0022112076002838

    Article  MATH  Google Scholar 

  • V. E. B. Dussan (1979) ArticleTitleOn the spreading of liquids on solid surfaces: static and dynamic contact lines Ann. Rev. Fluid Mech. 11 371–400 Occurrence Handle10.1146/annurev.fl.11.010179.002103

    Article  Google Scholar 

  • P. A. Thompson M. O. Robbins (1989) ArticleTitleSimulations of contact-line motion: slip and the dynamic contact angle Phys. Rev. Lett. 63 766–769 Occurrence Handle10.1103/PhysRevLett.63.766

    Article  Google Scholar 

  • P. A. Thompson M. O. Robbins (1990) ArticleTitleShear flow near solids: epitaxial order and flow boundary conditions Phys. Rev. A. 41 6830–6837 Occurrence Handle10.1103/PhysRevA.41.6830

    Article  Google Scholar 

  • M. T. Matthews J. M. Hill (2006) ArticleTitleMicro/nano sliding plate problem with Navier boundary condition ZAMP 57 875–903 Occurrence Handle05059697 Occurrence Handle10.1007/s00033-006-0067-4 Occurrence Handle2256128

    Article  MATH  MathSciNet  Google Scholar 

  • H. K. Moffatt (1963) ArticleTitleViscous and resistive eddies near a sharp corner J. Fluid Mech. 18 1–18 Occurrence Handle10.1017/S0022112064000015

    Article  Google Scholar 

  • J. Koplik J. R. Banavar (1995) ArticleTitleCorner flow in the sliding plate problem Phys. Fluids 7 3118–3125 Occurrence Handle1026.76551 Occurrence Handle10.1063/1.868619

    Article  MATH  Google Scholar 

  • S. Richardson (1973) ArticleTitleOn the no-slip boundary condition J. Fluid Mech. 59 707–719 Occurrence Handle0265.76037 Occurrence Handle10.1017/S0022112073001801

    Article  MATH  Google Scholar 

  • M. A. Goldshtik (1990) ArticleTitleViscous flow paradoxes Ann. Rev. Fluid Mech. 22 441–472 Occurrence Handle10.1146/annurev.fl.22.010190.002301 Occurrence Handle1043924

    Article  MathSciNet  Google Scholar 

  • C. L. M. H. Navier (1823) ArticleTitleMémoire sur les lois du mouvement des fluides Mémoires de l'Académie Royale des Sciences de l'Institut de France 6 389–440

    Google Scholar 

  • J. C. Maxwell (1879) ArticleTitleOn stresses in rarefied gases arising from inequalities of temperature Phil. Trans. R. Soc. London 170 231–256 Occurrence Handle10.1098/rstl.1879.0067

    Article  Google Scholar 

  • M. T. Matthews J. M. Hill (2006) ArticleTitleFlow around nanospheres and nanocylinders Q. J. Mech. Appl. Math. 59 191–210 Occurrence Handle1100.76017 Occurrence Handle10.1093/qjmam/hbj003 Occurrence Handle2219884

    Article  MATH  MathSciNet  Google Scholar 

  • Y. D. Shikhmurzaev (1993) ArticleTitleThe moving contact line on a smooth solid surface Int. J. Multiph. Flow 19 589–610 Occurrence Handle10.1016/0301-9322(93)90090-H

    Article  Google Scholar 

  • Y. D. Shikhmurzaev (1997) ArticleTitleMoving contact lines in liquid/liquid/solid systems J. Fluid Mech. 334 211–249 Occurrence Handle0887.76021 Occurrence Handle10.1017/S0022112096004569 Occurrence Handle1442613

    Article  MATH  MathSciNet  Google Scholar 

  • T. Qian X. P. Wang (2005) ArticleTitleDriven cavity flow: from molecular dynamics to continuum hydrodynamics Multiscale Model. Sim. 3 749–763 Occurrence Handle1108.76026 Occurrence Handle10.1137/040604868 Occurrence Handle2164234

    Article  MATH  MathSciNet  Google Scholar 

  • T. Qian X. P. Wang P. Sheng (2003) ArticleTitleGeneralized Navier boundary condition for the moving contact line Commun. Math. Sci. 1 333–341 Occurrence Handle02247624 Occurrence Handle1980479

    MATH  MathSciNet  Google Scholar 

  • T. Qian X. P. Wang P. Sheng (2003) ArticleTitleMolecular scale contact line hydrodynamics of immiscible flows Phys. Rev. E 68 016306 Occurrence Handle10.1103/PhysRevE.68.016306

    Article  Google Scholar 

  • T. Qian X. P. Wang P. Sheng (2004) ArticleTitlePower-law slip profile of the moving contact line in two-phase immiscible flows Phys. Rev. Lett 93 094501 Occurrence Handle10.1103/PhysRevLett.93.094501

    Article  Google Scholar 

  • T. Qian X. P. Wang P. Sheng (2005) ArticleTitleHydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics Phys. Rev. E 72 022501 Occurrence Handle10.1103/PhysRevE.72.022501

    Article  Google Scholar 

  • P. A. Thompson S. M. Troian (1997) ArticleTitleA general boundary condition for liquid flow at solid surfaces Nature 389 360–362 Occurrence Handle10.1038/39475

    Article  Google Scholar 

  • Happel, J., Brenner, H.: Low Reynolds number hydrodynamics. Prentice-Hall 1965.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, M.T., Hill, J.M. Newtonian flow with nonlinear Navier boundary condition. Acta Mechanica 191, 195–217 (2007). https://doi.org/10.1007/s00707-007-0454-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0454-8

Keywords

Navigation