Skip to main content
Log in

Two fast finite difference schemes for elliptic Dirichlet boundary control problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze two standard finite difference schemes (called Scheme I and Scheme II) for discretizing the first-order necessary optimality systems, which characterize the optimal solutions of Dirichlet boundary control problems governed by elliptic equations. We proved that the proposed schemes are uniformly stable on a uniform mesh, which implies a second-order and first-order convergence of the Scheme I and Scheme II, respectively, provided the optimal solutions have the required regularity. The resulting symmetric indefinite sparse linear systems are solved by the preconditioned GMRES iterative solver with a fast (FFT-based) constraint preconditioner, which numerically shows a mesh-independent convergence rate. Numerical examples, including the case with less regular solutions, are presented to validate our theoretical analysis and demonstrate the promising approximation accuracy and computational efficiency of our proposed schemes and preconditioned iterative solver, respectively. Our developed fast finite difference schemes achieve a comparable order of convergence as the other available schemes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For our considered rectangle domain, the high regularity assumptions of y and z are rather restrictive, since both f and g are required to be sufficiently smooth and also satisfy suitable compatibility conditions at the four corners. With less regular solutions, we expect to obtain lower order of accuracy (see Example 3 in Sect. 4). Our current paper focuses on the case with smooth solutions, which serves as the first step toward more practical cases with nonsmooth solutions. It is likely to enforce only minimal regularity assumptions [5] by analyzing our proposed finite difference schemes within the framework of generalized (weak) solutions [25, Ch. 2], but how to obtain such (optimal) error estimates in various norms is still open for further study. The requirement of high regularity of solutions is an obvious drawback of any standard finite difference schemes. However, their simplicity and flexibility are very attractive to those applications in demand of efficient numerical implementation.

References

  1. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  3. John, C., Wachsmuth, D.: Optimal Dirichlet boundary control of stationary Navier–Stokes equations with state constraint. Numer. Funct. Anal. Optim. 30(11–12), 1309–1338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casas, E., Günther, A., Mateos, M.: A paradox in the approximation of Dirichlet control problems in curved domains. SIAM J. Control Optim. 49(5), 1998–2007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53(6), 3620–3641 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Apel, T., Nicaise, S., Pfefferer, J.: Discretization of the poisson equation with non-smooth data and emphasis on non-convex domains. Numer. Methods Partial Differ. Equ. 32(5), 1433–1454 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: Error estimates for Dirichlet control problems in polygonal domains: quasi-uniform meshes. Math. Control Relat. Fields 8(1), 217–245 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45(5), 1586–1611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vexler, B.: Finite element approximation of elliptic Dirichlet optimal control problems. Numer. Funct. Anal. Optim. 28(7–8), 957–973 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48(4), 2798–2819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gong, W., Yan, N.: Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs. SIAM J. Control Optim. 49(3), 984–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51(3), 2585–2611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Of, G., Phan, T.X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems. Numerische Mathematik 129(4), 723–748 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gong, W., Liu, W., Tan, Z., Yan, N.: A convergent adaptive finite element method for elliptic Dirichlet boundary control problems. IMA J. Numer. Anal. 22, 1–31 (2018). https://doi.org/10.1093/imanum/dry051

    Article  Google Scholar 

  15. Mateos, M.: Optimization methods for Dirichlet control problems. Optimization 67(5), 585–617 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karkulik, M.: A finite element method for elliptic Dirichlet boundary control problems. arXiv e-prints arXiv:1811.09251

  17. Of, G., Phan, T.X., Steinbach, O.: Boundary element methods for Dirichlet boundary control problems. Math. Methods Appl. Sci. 33(18), 2187–2205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. John, L., Swierczynski, P., Wohlmuth, B.: Energy corrected FEM for optimal Dirichlet boundary control problems. Numerische Mathematik 139(4), 913–938 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gerdts, M., Greif, G., Pesch, H.J.: Numerical optimal control of the wave equation: optimal boundary control of a string to rest in finite time. Math. Comput. Simul. 79(4), 1020–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ervedoza, S., Zuazua, E.: The wave equation: control and numerics. In: Cannarsa, P., Coron, J.M. (eds.) Control of Partial Differential Equations, pp. 245–339. Springer, Berlin (2012)

    Chapter  Google Scholar 

  22. Gugat, M., Sokolowski, J.: A note on the approximation of Dirichlet boundary control problems for the wave equation on curved domains. Appl. Anal. 92(10), 2200–2214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Apel, T., Nicaise, S., Pfefferer, J.: Adapted numerical methods for the poisson equation with \({L}^2\) boundary data in NonConvex domains. SIAM J. Numer. Anal. 55(4), 1937–1957 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Heinrich, B.: Finite Difference Methods on Irregular Networks. Birkhuser, Basel (1987)

    Book  MATH  Google Scholar 

  25. Jovanović, B.S., Süli, E.: Analysis of Finite Difference Schemes. Springer Series in Computational Mathematics, vol. 46. Springer, London (2014)

    Book  Google Scholar 

  26. Chang, L., Gong, W., Yan, N.: Weak boundary penalization for Dirichlet boundary control problems governed by elliptic equations. J. Math. Anal. Appl. 453(1), 529–557 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  28. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, New York (2009)

    MATH  Google Scholar 

  29. Tröltzsch, F.: Optimal Control of Partial Differential Equations. AMS, Providence (2010)

    MATH  Google Scholar 

  30. Mateos, M., Neitzel, I.: Dirichlet control of elliptic state constrained problems. Comput. Optim. Appl. 63(3), 825–853 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, W., Shen, J., Singler, J.R., Zhang, Y., Zheng, X.: A Superconvergent Hybridizable Discontinuous Galerkin Method for Dirichlet Boundary Control of Elliptic PDEs. arXiv e-prints arXiv:1712.02931

  32. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  33. Coco, A., Russo, G.: Finite-difference ghost-point multigrid methods on cartesian grids for elliptic problems in arbitrary domains. J. Comput. Phys. 241, 464–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Coco, A., Russo, G.: Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. J. Comput. Phys. 361, 299–330 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  36. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment, English Edition. Springer, Berlin (2010)

    Google Scholar 

  37. Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9(2), 267–293 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  38. Heidel, G., Wathen, A.: Preconditioning for boundary control problems in incompressible fluid dynamics. Numer. Linear Algebra Appl. 26(1), e2218 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  40. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29(3), 752–773 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, B., Liu, J., Xiao, M.: A fast and stable preconditioned iterative method for optimal control problem of wave equations. SIAM J. Sci. Comput. 37(6), A2508–A2534 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Brandt, A., Livne, O.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. Revised Edition, Classics in Applied Mathematics. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  44. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press Inc., San Diego (2001)

    MATH  Google Scholar 

  45. Borzì, A., Schulz, V.: Multigrid methods for PDE optimization. SIAM Rev. 51(2), 361–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Computer Science and Scientific Computing. Academic Press Inc., Boston (1990)

    Google Scholar 

  47. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pearson, J.W., Wathen, A.J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algorithm Appl. 19(5), 816–829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pearson, J.W., Stoll, M., Wathen, A.J.: Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 33(4), 1126–1152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pearson, J.W., Wathen, A.: Matching Schur complement approximations for certain saddle-point systems. In: Dick, J., Kuo, F.Y., Wozniakowski, H. (eds.) Contemporary Computational Mathematics: A Celebration of the 80th Birthday of Ian Sloan. Springer, Berlin (2018)

    Google Scholar 

  51. Bramble, J.H., Hubbard, B.E.: On the formulation of finite difference analogues of the Dirichlet problem for poisson’s equation. Numer. Math. 4(1), 313–327 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ulbrich, M.: Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  54. Neittaanmäki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems. Marcel Dekker Inc., New York (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and two anonymous referees for their valuable comments and detailed suggestions that have significantly contributed to improving the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Two fast finite difference schemes for elliptic Dirichlet boundary control problems. J. Appl. Math. Comput. 61, 481–503 (2019). https://doi.org/10.1007/s12190-019-01261-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01261-2

Keywords

Mathematics Subject Classification

Navigation