Skip to main content
Log in

Positive solutions of periodic boundary value problems for second-order differential equations with the nonlinearity dependent on the derivative

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, we study the existence of positive solutions of periodic boundary value problems for the second-order differential equation with the nonlinearity depends on the derivative

$$\begin{aligned} \left\{ {\begin{array}{l}\left( { Lu} \right) \left( t \right) = h\left( t \right) f\left( {u\left( t \right) ,{u}'\left( t \right) } \right) ,\quad 0 \le t \le \omega ,\\ R_1 \left( \! u \right) \equiv u\left( 0 \right) - u\left( \omega \right) = 0,\\ R_2 \left( \! u \right) \equiv p\left( 0 \right) {u}'\left( 0 \right) - p\left( \omega \right) {u}'\left( \omega \right) = 0, \end{array}} \right. \end{aligned}$$

where \(\left( {Lu} \right) \left( t \right) = - \left( {p\left( t \right) {u}'} \right) ^\prime + q\left( t \right) u\). By applying coincidence degree theorem, some conditions guaranteeing the existence of at least one positive solution are given in terms of the relative behaviors of the quotient \(\displaystyle \frac{f\left( {u,v} \right) }{\left| u \right| + \left| v \right| }\) for \(|u|+ |v|\) near 0 and \( + \infty \). The result discussed in the paper is a generalization of recent one and the difference is that a nonlinear term depends on the derivative of unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merdivenci Atici, F., Guseinov, G.Sh: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math. 132, 341–356 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coulson, C.A.: Waves: A Mathematical Approach to the Common Types of Wave Motion. Longman, New York (1977)

    Google Scholar 

  3. Gaines, R. E., Mawhin, J. L.: Coincidence degree, and nonlinear differential equations. In: LNM, vol. 568. Springer, Berlin (1977).

  4. Guo, D., Sun, J., Liu, Z.: Functional Methods in Nonlinear Ordinary Differential Equations. Shandong Science and Technology Press, Jinan (1995). (in Chinese)

    Google Scholar 

  5. Graef, J.R., Kong, L., Wang, H.: Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. J. Diff. Equat. 245, 1185–1197 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ge, W., Li, C., Wang, H.: Ordinary Differential Equations and Boundary Value Problems. Science Press, Beijing (2008). (in Chinese)

    Google Scholar 

  7. Hao, X., Liu, L., Wu, Y.: Existence and multiplicity results for nonlinear periodic boundary value problems. Nonlinear Anal. 72, 3635–3642 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. He, T., Yang, F., Chen, C., Peng, S.: Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter. Comput. Math. Appl. 61, 3355–3363 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Joannopoulos, J.D., Johnson, S.G., Winnn, J.N., Meade, R.D.: Photonic Crystals: Molding the Folw of Light, 2nd edn. Princeton University Press, Princeton (2008)

    Google Scholar 

  10. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Upper Saddle River (1967)

    Google Scholar 

  11. Shang, X.C., Cheng, C.J.: Exact solution for cavitated bifurcation for compressible hyper-elastic materials. Int. J. Eng. Sci. 39, 1101–1117 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Teschl, G.: Mathematical Metheods in Quantum Mechanics: With Applications to Schrödinger Operators, Graduate Studies in Mathematics, vol. 99. American Mathematical Society, Providence (2009)

    Google Scholar 

  13. Wang, Z., Zhang, J.: Positive solutions for one-dimensional p-Laplacian boundary value problems with dependence on the first order derivative. J. Math. Anal. Appl. 314, 618–630 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yuan, X.G., Zhu, Z.Y., Cheng, C.J.: Study on cavitated bifurcation problem for spheres composed of hyper-elastic materials. J. Eng. Math. 51, 15–34 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Supported by NNSF of China (11271106), HEBNSF of China (A2012506010) and HEBYNSF of China (A2014506016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Appendix

Appendix

Like the well-known Arzela–Ascoli theorem in [6], it is easy to prove the lemma below.

Lemma 4.1

\(F \subset C^1\left[ {0,1} \right] \) ( the norm is defined by (2.1)) is relatively compact if and only if both \(F\) and \({F}{^\prime } = \left\{ {\left. {u}{^\prime } \right| u \in F} \right\} \) are uniformly bounded and equicontinuous.

Thus we can prove the following lemma which is applied in Sect. 2.

Lemma 4.2

\(L^{ - 1}:Z \rightarrow X\) is a completely continuous linear operator.

Proof

Firstly, we shall show the continuity of \(L^{ - 1}\).

Let \(u_n ,u_0 \in Z\) with \(\left\| {u_n - u_0 } \right\| _0 \rightarrow 0;\) then \(\forall \varepsilon > 0,\) there exists a positive integer \(N\) such that whenever \(n > N,\left\| {u_n - u_0 } \right\| _0 < K^{ - 1}\varepsilon ,\) where

$$\begin{aligned} K&= \omega \max \{a\left\| \phi \right\| _0^2 + b\left\| \psi \right\| _0^2 + \left( { A + B } \right) \left\| \phi \right\| _0 \left\| \psi \right\| _0,\\&\quad a {\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 + C\left( {\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 + \left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 } \right) } \}, \end{aligned}$$

and \(a,b,A,B,\phi \left( t \right) ,\psi \left( t \right) ,C\) given by Lemma 1.1. So for \(n > N\) we have

$$\begin{aligned}&\left| {\left( {L^{ - 1}u_n } \right) \left( t \right) - \left( {L^{ - 1}u_0 } \right) \left( t \right) } \right| \le \int _0^\omega {G\left( {t,s} \right) } \left| {u_n \left( s \right) - u_0 \left( s \right) } \right| ds \\&\quad \le \displaystyle \frac{K}{\omega }\int _{0}^{\omega }{\left| {u_n ( s ) - u_0 \left( s \right) } \right| } ds < \varepsilon , \left| {\left( {L^{ - 1}u_n } \right) ^\prime \left( t \right) - \left( {L^{ - 1}u_0 } \right) ^\prime \left( t \right) } \right| \\&\quad \le \left| {\left( {\int _0^\omega {G\left( {t,s} \right) } u_n \left( s \right) ds} \right) ^\prime - \left( {\int _0^\omega {G\left( {t,s} \right) } u_0 \left( s \right) ds} \right) ^\prime } \right| \\&\quad =\left| {\left( {\int _0^\omega {\left( {a\phi \left( t \right) \phi \left( s \right) - b\psi \left( t \right) \psi \left( s \right) } \right) (u_n \left( s \right) -u_0 \left( s \right) )} ds} \right) ^\prime } \right. \\&\qquad +\left( {\int _0^t {\left( {A\phi \left( t \right) \psi \left( s \right) - B\phi \left( s \right) \psi \left( t \right) } \right) (u_n \left( s \right) -u_0 \left( s \right) )} ds} \right) ^\prime \\&\qquad +\left. \left( {\int _t^\omega {\left( {A\phi \left( s \right) \psi \left( t \right) - B\phi \left( t \right) \psi \left( s \right) } \right) (u_n \left( s \right) -u_0 \left( s \right) )} ds} \right) ^\prime \right| \\&\quad =\left| {\left( {\int _0^\omega {a\phi \left( t \right) \phi \left( s \right) (u_n \left( s \right) \!-\!u_0 \left( s \right) )} ds} \right) ^\prime } \right. \\&\qquad -\left( {\int _0^\omega {b\psi \left( t \right) \psi \left( s \right) (u_n \left( s \right) \!-\!u_0 \left( s \right) )} ds} \right) ^\prime \\&\qquad + \left( {\int _0^t {A\phi \left( t \right) \psi \left( s \right) (u_n \left( s \right) \!-\!u_0 \left( s \right) )} ds} \right) ^\prime \end{aligned}$$
$$\begin{aligned}&\qquad - \left( {\int _0^t {B\phi \left( s \right) \psi \left( t\right) (u_n \left( s \right) \!-\!u_0 \left( s \right) )} ds} \right) ^\prime \\&\qquad + \left( {\int _t^\omega \!\! {A\phi \left( s \right) \psi \left( t \right) (u_n \left( s \right) \!-\!u_0 \left( s \right) )} ds} \right) ^\prime \\&\qquad \left. { - \left( {\int _t^\omega \!\! {B\phi \left( t \right) \psi \left( s \right) (u_n \left( s \right) \!-\!u_0 \left( s \right) )} ds} \right) ^\prime } \right| \\&\quad = \left| {a{\phi }{^\prime }\left( t \right) \int _0^\omega {\phi \left( s \right) \left( {u_n \left( s \right) - u_0 \left( s \right) } \right) } ds - b{\psi }{^\prime }\left( t \right) \int _0^\omega {\psi \left( s \right) \left( {u_n \left( s \right) - u_0 \left( s \right) } \right) } ds} \right. \\&\qquad +\, A{\phi }{^\prime }\left( t \right) \int _0^t {\psi \left( s \right) \left( {u_n \left( s \right) - u_0 \left( s \right) } \right) } ds - B{\psi }{^\prime }\left( t \right) \int _0^t {\phi \left( s \right) \left( {u_n \left( s \right) - u_0 \left( s \right) } \right) } ds \\&\qquad + \left. A{\psi }'\left( t \right) \int _t^\omega {\phi \left( s \right) \left( {u_n \left( s \right) - u_0 \left( s \right) } \right) } ds - B{\phi }{^\prime }\left( t \right) \int _t^\omega {\psi \left( s \right) \left( {u_n \left( s \right) - u_0 \left( s \right) } \right) } ds \right| \\&\quad \le \left( a {\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 } \right) \int _0^\omega {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds \\&\qquad +\, A \left\| {{\phi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 \int _0^t {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds + B\left\| {{\phi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 \int _t^\omega {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds \\&\qquad +\,B \left\| {{\psi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 \int _0^t {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds + A\left\| {{\psi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 \int _t^\omega {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds. \\&\quad \le \left( a {\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 } \right) \int _0^\omega {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds \\&\qquad +\, C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \int _0^t {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds + C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \int _t^\omega {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds \end{aligned}$$
$$\begin{aligned}&\qquad +\, C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \int _0^t {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds + C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \int _t^\omega {\left| {u_n \left( s \right) - u_0 \left( s \right) } \right| } ds \\&\quad \le \omega \left( a{\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 } \right) \left\| {u_n \left( s \right) - u_0 \left( s \right) } \right\| _0 \\&\qquad +\, C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \left\| {u_n \left( s \right) - u_0 \left( s \right) } \right\| _0 t + C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \left\| {u_n \left( s \right) - u_0 \left( s \right) } \right\| _0 \left( {\omega - t} \right) \\&\qquad +\, C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \left\| {u_n \left( s \right) - u_0 \left( s \right) } \right\| _0 t + C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \left\| {u_n \left( s \right) - u_0 \left( s \right) } \right\| _0 \left( {\omega - t} \right) \\&\quad \le \omega \left( a {\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 + C\left( {\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 + \left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 } \right) } \right) \\&\qquad \left\| {u_n \left( s \right) - u_0 \left( s \right) } \right\| _0\le \varepsilon . \end{aligned}$$

And hence \(\left\| {L^{ - 1}u_n - L^{ - 1}u_0 } \right\| _1 < \varepsilon ,\) i.e. \(L^{ - 1}\) is continuous.

Secondly, we shall show that both \(L^{ - 1}F\) and \(\left( {L^{ - 1}F} \right) ^\prime \) are uniformly bounded.

Suppose \(F \subset Z\) is bounded; then there exists a constant \(M > 0\) such that \(\left\| u \right\| _0 \le M,\forall u \in F\). Consequently for \( \forall u \in F, \)

$$\begin{aligned} \left| {\left( {L^{ - 1}u} \right) \left( t \right) } \right|&= \left| {\int _0^\omega {G\left( {t,s} \right) } u\left( s \right) ds} \right| \le \int _0^\omega {G\left( {t,s} \right) } \left| {u\left( s \right) } \right| ds \le KM.\\ \left| {\left( {L^{ - 1}u} \right) ^\prime \left( t \right) } \right|&= \left| {\left( {\int _0^\omega {\left( {a\phi \left( t \right) \phi \left( s \right) - b\psi \left( t \right) \psi \left( s \right) } \right) } u\left( s \right) ds} \right) ^\prime } \right. \\&\,+ \left( {\int _0^t {\left( {A\phi \left( t \right) \psi \left( s \right) - B\phi \left( s \right) \psi \left( t \right) } \right) } u\left( s \right) ds} \right) ^\prime \\&\,+\left. \left( {\int _t^\omega {\left( {A\phi \left( s \right) \psi \left( t \right) - B\phi \left( t \right) \psi \left( s \right) } \right) } u\left( s \right) ds} \right) ^{\prime } \right| \\&= \left| {a{\phi }{^\prime }\left( t \right) \int _0^\omega {\phi \left( s \right) } u\left( s \right) ds - } \right. b{\psi }{^\prime }\left( t \right) \int _0^\omega {\psi \left( s \right) } u\left( s \right) ds\\&\,+ \,A{\phi }{^\prime }\left( t \right) \int _0^t {\psi \left( s \right) } u\left( s \right) ds - B{\psi }{^\prime }\left( t \right) \int _0^t {\phi \left( s \right) } u\left( s \right) ds\\&\,+\,\left. { A{\psi }{^\prime }\left( t \right) \int _t^\omega {\phi \left( s \right) } u\left( s \right) ds - B{\phi }{^\prime }\left( t \right) \int _t^\omega {\psi \left( s \right) } u\left( s \right) ds} \right| \\&\le \omega \left( a{\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 } \right) \left\| u \right\| _0\\&\,+\,\quad C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \left\| u \right\| _0 t + C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \left\| u \right\| _0 \left( {\omega - t} \right) \\&\,+ \,C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \left\| u \right\| _0 t + C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \left\| u \right\| _0 \left( {\omega - t} \right) \\&\le \omega \left( a{\left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0 + b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0 } \right) \left\| u \right\| _0\\&\,+\,\,\omega C\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \left\| u \right\| _0 + \omega C\left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 \left\| u \right\| _0\\&= \!\omega (a \left\| {{\phi }{^\prime }} \right\| _0 \left\| \phi \right\| _0\!+\!b\left\| {{\psi }{^\prime }} \right\| _0 \left\| \psi \right\| _0\\&+\,C\left( {\left\| {\phi }{^\prime } \right\| _0 \left\| \psi \right\| _0 \!+\! \left\| {\psi }{^\prime } \right\| _0 \left\| \phi \right\| _0 } \right) )\left\| u \right\| _0 \\&\le KM. \end{aligned}$$

These imply that both \(L^{ - 1}F\) and \(\left( {L^{ - 1}F} \right) ^\prime \) are uniformly bounded.

Thirdly, we shall show that \(L^{ - 1}F\) and \(\left( {L^{ - 1}F} \right) ^\prime \) are equicontinuous.

For \(\forall u \in F,t_1 ,t_2 \in [0,\omega ],\) we have

$$\begin{aligned} \left| {\left( {L^{ - 1}u} \right) \left( {t_1 } \right) - \left( {L^{ - 1}u} \right) \left( {t_2 } \right) } \right|&= \left| {\int _0^\omega {\left( {G\left( {t_1 ,s} \right) - G\left( {t_2 ,s} \right) } \right) } u\left( s \right) ds} \right| \\&\le \int _0^\omega {\left| {G\left( {t_1 ,s} \right) - G\left( {t_2 ,s} \right) } \right| } \left| {u\left( s \right) } \right| ds\\&\le M\int _0^\omega {\left| {G\left( {t_1 ,s} \right) - G\left( {t_2 ,s} \right) } \right| } ds. \end{aligned}$$

It is easy to see that \(L^{ - 1}F\) is equicontinuous.

Since

$$\begin{aligned}&\big |{\left( {L^{ - 1}u} \right) ^\prime \left( {t_1 } \right) \!-\! \left( {L^{ - 1}u} \right) ^\prime \left( {t_2 } \right) }|=\left| {\left( {\int _0^\omega {G\left( {t_1 ,s} \right) } u\left( s \right) ds} \right) ^\prime \!-\! \left( {\int _0^\omega {G\left( {t_2 ,s} \right) } u\left( s \right) ds} \right) ^\prime }\right| \\&\quad = \left| {a\left( {{\phi }'\left( {t_1 } \right) - {\phi }'\left( {t_2 } \right) } \right) \int _0^\omega {\phi \left( s \right) } u\left( s \right) ds - } \right. b\left( {{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2 } \right) } \right) \int _0^\omega {\psi \left( s \right) } u\left( s \right) ds\\&\qquad +\, A{\phi }{^\prime }\left( {t_1 } \right) \int _0^{t_1 } {\psi \left( s \right) } u\left( s \right) ds - A{\phi }{^\prime }\left( {t_2 } \right) \int _0^{t_2 } {\psi \left( s \right) } u\left( s \right) ds \\&\qquad - \, B{\psi }{^\prime }\left( {t_1 } \right) \int _0^{t_1 } {\phi \left( s \right) } u\left( s \right) ds + B{\psi }{^\prime }\left( {t_2 } \right) \int _0^{t_2 } {\phi \left( s \right) } u\left( s \right) ds\\&\qquad + \, A{\psi }{^\prime }\left( {t_1 } \right) \int _{t_1 }^\omega {\phi \left( s \right) } u\left( s \right) ds - A{\psi }{^\prime }\left( {t_2 } \right) \int _{t_2 }^\omega {\phi \left( s \right) } u\left( s \right) ds \\&\qquad - \, B{\phi }{^\prime }(t_1)\int _{t_1 }^\omega \psi (s)u(s)ds+B{\phi }{^\prime }(t_2)\int _{t_2 }^\omega \psi (s)u(s)ds|\\&\quad = \left| a({\phi }{^\prime }(t_1)-{\phi }{^\prime }(t_2))\int _0^\omega \phi (s)u(s)ds-b({\psi }'(t_1)-{\psi }{^\prime }(t_2))\int _0^\omega \psi (s)u(s)ds\right. \\&\qquad + \, A{\phi }{^\prime }\left( {t_1 } \right) \int _0^{t_1 }\! {\psi \left( s \right) } u\left( s \right) ds \!-\! A{\phi }{^\prime }\left( {t_2 } \right) \int _{t_1 }^{t_2 }\! {\psi \left( s \right) } u\left( s \right) ds \\&\qquad - \,A{\phi }{^\prime }\left( {t_2 } \right) \int _0^{t_1 }\! {\psi \left( s \right) } u\left( s \right) ds \\&\qquad - \, B{\psi }{^\prime }\left( {t_1 } \right) \int _0^{t_1 }\! {\phi \left( s \right) } u\left( s \right) ds \!+\! B{\psi }{^\prime }\left( {t_2 } \right) \int _{t_1 }^{t_2 }\! {\phi \left( s \right) } u\left( s \right) ds \\&\qquad +\, B{\psi }{^\prime }\left( {t_2 } \right) \int _0^{t_1 }\! {\phi \left( s \right) } u\left( s \right) ds \\&\qquad +\, A{\psi }{^\prime }\left( {t_1 } \right) \int _{t_1 }^\omega \! {\phi \left( s \right) } u\left( s \right) ds \!-\! A{\psi }{^\prime }\left( {t_2 } \right) \int _{t_1 }^\omega \! {\phi \left( s \right) } u\left( s \right) ds \\&\qquad - \,A{\psi }{^\prime }\left( {t_2 } \right) \int _{t_2 }^{t_1 }\! {\phi \left( s \right) } u\left( s \right) ds \\&\qquad \left. -\,B{\phi }{^\prime }(t_1)\int _{t_1 }^\omega \! \psi (s)u(s)ds\!+\!B{\phi }'(t_2)\int _{t_1 }^\omega \! \psi (s)u(s)ds+B{\phi }{^\prime }(t_2)\int _{t_2 }^{t_1 }\!\psi (s)u(s)ds \right| \end{aligned}$$
$$\begin{aligned}&\quad \le a\left| {{{\phi }{^\prime }\left( {t_1 } \right) - {\phi }{^\prime }\left( {t_2 } \right) } } \right| \left\| \phi \right\| _0 \left\| u \right\| _0 \omega + b\left| {{{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2 } \right) }} \right| \left\| \psi \right\| _0 \left\| u \right\| _0 \omega \\&\qquad + \, A\left| {{{\phi }{^\prime }\left( {t_1 } \right) - {\phi }{^\prime }\left( {t_2 } \right) }} \right| \left\| \psi \right\| _0 \left\| u \right\| _0 \omega +\, A\left| {{\phi }'\left( {t_2 } \right) } \right| \left\| \psi \right\| _0 \left\| u \right\| _0 \left| {t_2 - t_1 } \right| \\&\qquad + \, B\left| {{{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2} \right) } } \right| \left\| \phi \right\| _0 \left\| u \right\| _0 \omega + \, B\left| {{\psi }{^\prime }\left( {t_2 } \right) } \right| \left\| \phi \right\| _0 \left\| u \right\| _0 \left| {t_2 - t_1 } \right| \\&\qquad + \, A\left| { {{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2 } \right) } } \right| \left\| \phi \right\| _0 \left\| u \right\| _0 \omega + \, A\left| {{\psi }{^\prime }\left( {t_2 } \right) } \right| \left\| \phi \right\| _0 \left\| u \right\| _0 \left| {t_2 - t_1 } \right| \\&\qquad + \, B\left| { {{\phi }{^\prime }\left( {t_1 } \right) - {\phi }{^\prime }\left( {t_2 } \right) } } \right| \left\| \psi \right\| _0 \left\| u \right\| _0 \omega + \, B\left| {{\phi }{^\prime }\left( {t_2 } \right) } \right| \left\| \psi \right\| _0 \left\| u \right\| _0 \left| {t_2 - t_1 } \right| \\&\quad \le a\left| { {{\phi }{^\prime }\left( {t_1 } \right) - {\phi }'\left( {t_2 } \right) } } \right| \left\| \phi \right\| _0 M\omega + b\left| { {{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2 } \right) } } \right| \left\| \psi \right\| _0 M\omega \\&\qquad + \, A\left| { {{\phi }{^\prime }\left( {t_1 } \right) - {\phi }'\left( {t_2 } \right) } } \right| \left\| \psi \right\| _0 M\omega + A\left| {{\phi }{^\prime }\left( {t_2 } \right) } \right| \left\| \psi \right\| _0 M\left| {t_2 - t_1 } \right| \\&\qquad + \, B\left| {{{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2 } \right) } } \right| \left\| \phi \right\| _0 M\omega + B\left| {{\psi }{^\prime }\left( {t_2 } \right) } \right| \left\| \phi \right\| _0 M\left| {t_2 - t_1 } \right| \\&\qquad + \, A\left| { {{\psi }{^\prime }\left( {t_1 } \right) - {\psi }{^\prime }\left( {t_2 } \right) } } \right| \left\| \phi \right\| _0 M\omega + A\left| {{\psi }'\left( {t_2 } \right) } \right| \left\| \phi \right\| _0 M\left| {t_2 - t_1 } \right| \\&\qquad + \, B\left| { {{\phi }{^\prime }\left( {t_1 } \right) - {\phi }{^\prime }\left( {t_2 } \right) }} \right| \left\| \psi \right\| _0 M\omega + B\left| {{\phi }'\left( {t_2 } \right) } \right| \left\| \psi \right\| _0 M\left| {t_2 - t_1 } \right| , \end{aligned}$$

\(\left( {L^{ - 1}F} \right) ^{\prime }\) is equicontinuous.

To sum up, it can be inferred that \(L^{ - 1}F\) is relatively compact in \(X\) by Lemma 4.1. According to the definition of completely continuous linear operator in [6], we can know that \(L^{ - 1}\) is completely continuous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Feng, H. Positive solutions of periodic boundary value problems for second-order differential equations with the nonlinearity dependent on the derivative. J. Appl. Math. Comput. 49, 343–355 (2015). https://doi.org/10.1007/s12190-014-0842-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0842-x

Keywords

Mathematics Subject Classification

Navigation