Skip to main content

Advertisement

Log in

Cancer-associated thrombosis in hematologic malignancies

  • Progress in Hematology
  • Cancer associated thrombosis and bleeding
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Patients with hematologic malignancies are often complicated not only by severe bleeding due to thrombocytopenia and disseminated intravascular coagulation but also by thromboembolic events, just like in patients with solid cancers, and these events can negatively impact patient outcomes. Nevertheless, the prevention and treatment of cancer-associated thrombosis (CAT) in hematologic malignancies has not been adequately investigated due to the limited size, heterogeneity, and unique pathophysiology of the patient population. This article summarizes the current understanding, risk factors, prediction models, and optimal prevention and treatment strategies of CAT in hematologic malignancies on a disease-by-disease basis, including acute leukemia, lymphoma, myeloma, and myeloproliferative neoplasms. Specific considerations of novel molecular targeted therapeutics introduced in recent years, such as immunomodulatory drugs and tyrosine kinase inhibitors, are also discussed based on the latest clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lyman GH, Carrier M, Ay C, Di Nisio M, Hicks LK, Khorana AA, et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer. Blood Adv. 2021;5:927–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farge D, Frere C, Connors JM, Khorana AA, Kakkar A, Ay C, et al. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022;23:e334–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Key NS, Khorana AA, Kuderer NM, Bohlke K, Lee AYY, Arcelus JI, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO guideline update. J Clin Oncol. 2023;41:3063–71.

    Article  CAS  PubMed  Google Scholar 

  4. National Comprehensive Cancer Network. Cancer-Associated Venous Thromboembolic Disease (Version 2.2023) [Internet]. National Comprehensive Cancer Network; 2023 Jun. Report No.: Version 2.2023. Available from: https://www.nccn.org/professionals/physician_gls/pdf/vte.pdf.

  5. Mulder FI, Horváth-Puhó E, van Es N, van Laarhoven HWM, Pedersen L, Moik F, et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood. 2021;137:1959–69.

    Article  CAS  PubMed  Google Scholar 

  6. Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111:4902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mulder FI, Candeloro M, Kamphuisen PW, Di Nisio M, Bossuyt PM, Guman N, et al. The Khorana score for prediction of venous thromboembolism in cancer patients: a systematic review and meta-analysis. Haematologica. 2019;104:1277–87.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mirza A-S, Yun S, Ali NA, Shin H, O’Neil JL, Elharake M, et al. Validation of the Khorana score in acute myeloid leukemia patients: a single-institution experience. Thromb J. 2019;17:13.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martella F, Cerrano M, Di Cuonzo D, Secreto C, Olivi M, Apolito V, et al. Frequency and risk factors for thrombosis in acute myeloid leukemia and high-risk myelodysplastic syndromes treated with intensive chemotherapy: a two centers observational study. Ann Hematol. 2022;101:855–67.

    Article  CAS  PubMed  Google Scholar 

  10. Carrier M, Abou-Nassar K, Mallick R, Tagalakis V, Shivakumar S, Schattner A, et al. Apixaban to prevent venous thromboembolism in patients with cancer. N Engl J Med. 2019;380:711–9.

    Article  CAS  PubMed  Google Scholar 

  11. Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N Engl J Med. 2019;380:720–8.

    Article  CAS  PubMed  Google Scholar 

  12. Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378:615–24.

    Article  CAS  PubMed  Google Scholar 

  13. Agnelli G, Becattini C, Meyer G, Muñoz A, Huisman MV, Connors JM, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020;382:1599–607.

    Article  CAS  PubMed  Google Scholar 

  14. McBane RD 2nd, Wysokinski WE, Le-Rademacher JG, Zemla T, Ashrani A, Tafur A, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE trial. J Thromb Haemost. 2020;18:411–21.

    Article  CAS  PubMed  Google Scholar 

  15. Carney BJ, Wang T-F, Ren S, George G, Al Homssi A, Gaddh M, et al. Anticoagulation in cancer-associated thromboembolism with thrombocytopenia: a prospective, multicenter cohort study. Blood Adv. 2021;5:5546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lecumberri R, Ruiz-Artacho P, Trujillo-Santos J, Brenner B, Barillari G, Ruiz-Ruiz J, et al. Management and outcomes of cancer patients with venous thromboembolism presenting with thrombocytopenia. Thromb Res. 2020;195:139–45.

    Article  CAS  PubMed  Google Scholar 

  17. Houghton DE, Key NS, Zakai NA, Laux JP, Shea TC, Moll S. Analysis of anticoagulation strategies for venous thromboembolism during severe thrombocytopenia in patients with hematologic malignancies: a retrospective cohort. Leuk Lymphoma. 2017;58:2573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breccia M, Avvisati G, Latagliata R, Carmosino I, Guarini A, De Propris MS, et al. Occurrence of thrombotic events in acute promyelocytic leukemia correlates with consistent immunophenotypic and molecular features. Leukemia. 2007;21:79–83.

    Article  CAS  PubMed  Google Scholar 

  19. Lavallée V-P, Chagraoui J, MacRae T, Marquis M, Bonnefoy A, Krosl J, et al. Transcriptomic landscape of acute promyelocytic leukemia reveals aberrant surface expression of the platelet aggregation agonist Podoplanin. Leukemia. 2018;32:1349–57.

    Article  PubMed  Google Scholar 

  20. Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med. 1999;340:994–1004.

    Article  CAS  PubMed  Google Scholar 

  21. He K-L, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, et al. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem. 2008;283:19192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Bona E, Avvisati G, Castaman G, Luce Vegna M, De Sanctis V, Rodeghiero F, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108:689–95.

    Article  PubMed  Google Scholar 

  23. Altman JK, Rademaker A, Cull E, Weitner BB, Ofran Y, Rosenblat TL, et al. Administration of ATRA to newly diagnosed patients with acute promyelocytic leukemia is delayed contributing to early hemorrhagic death. Leuk Res. 2013;37:1004–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rodeghiero F, Avvisati G, Castaman G, Barbui T, Mandelli F. Early deaths and anti-hemorrhagic treatments in acute promyelocytic leukemia. A GIMEMA retrospective study in 268 consecutive patients. Blood. 1990;75:2112–7.

    Article  CAS  PubMed  Google Scholar 

  25. Brown JE, Olujohungbe A, Chang J, Ryder WD, Morganstern GR, Chopra R, et al. All-trans retinoic acid (ATRA) and tranexamic acid: a potentially fatal combination in acute promyelocytic leukaemia. Br J Haematol. 2000;110:1010–2.

    Article  CAS  PubMed  Google Scholar 

  26. Uchiumi H, Matsushima T, Yamane A, Doki N, Irisawa H, Saitoh T, et al. Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol. 2007;86:137–42.

    Article  PubMed  Google Scholar 

  27. Libourel EJ, Klerk CPW, van Norden Y, de Maat MPM, Kruip MJ, Sonneveld P, et al. Disseminated intravascular coagulation at diagnosis is a strong predictor for thrombosis in acute myeloid leukemia. Blood. 2016;128:1854–61.

    Article  CAS  PubMed  Google Scholar 

  28. Ku GH, White RH, Chew HK, Harvey DJ, Zhou H, Wun T. Venous thromboembolism in patients with acute leukemia: incidence, risk factors, and effect on survival. Blood. 2009;113:3911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vu K, Luong NV, Hubbard J, Zalpour A, Faderl S, Thomas DA, et al. A retrospective study of venous thromboembolism in acute leukemia patients treated at the University of Texas MD Anderson Cancer Center. Cancer Med. 2015;4:27–35.

    Article  PubMed  Google Scholar 

  30. Napolitano M, Valore L, Malato A, Saccullo G, Vetro C, Mitra ME, et al. Management of venous thromboembolism in patients with acute leukemia at high bleeding risk: a multi-center study. Leuk Lymphoma. 2016;57:116–9.

    Article  CAS  PubMed  Google Scholar 

  31. Al-Ani F, Wang YP, Lazo-Langner A. Development of a clinical prediction rule for venous thromboembolism in patients with acute leukemia. Thromb Haemost. 2020;120:322–8.

    Article  PubMed  Google Scholar 

  32. Hellou T, Cohen O, Avigdor A, Amitai I, Shimoni A, Misgav M, et al. The occurrence of thrombosis during intensive chemotherapy treatment for acute myeloid leukemia patients does not impact on long-term survival. Ann Hematol. 2023;102:1037–43.

    Article  CAS  PubMed  Google Scholar 

  33. Koschade SE, Stratmann JA, Steffen B, Shaid S, Finkelmeier F, Serve H, et al. Early-onset venous thromboembolisms in newly diagnosed non-promyelocytic acute myeloid leukemia patients undergoing intensive induction chemotherapy. Eur J Haematol. 2023;110:426–34.

    Article  CAS  PubMed  Google Scholar 

  34. Mohren M, Markmann I, Jentsch-Ullrich K, Koenigsmann M, Lutze G, Franke A. Increased risk of venous thromboembolism in patients with acute leukaemia. Br J Cancer. 2006;94:200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Stefano V, Sorà F, Rossi E, Chiusolo P, Laurenti L, Fianchi L, et al. The risk of thrombosis in patients with acute leukemia: occurrence of thrombosis at diagnosis and during treatment. J Thromb Haemost. 2005;3:1985–92.

    Article  PubMed  Google Scholar 

  36. Rank CU, Toft N, Tuckuviene R, Grell K, Nielsen OJ, Frandsen TL, et al. Thromboembolism in acute lymphoblastic leukemia: results of NOPHO ALL2008 protocol treatment in patients aged 1 to 45 years. Blood. 2018;131:2475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anderson DR, Stock W, Karrison TG, Leader A. d-dimer and risk for thrombosis in adults with newly diagnosed acute lymphoblastic leukemia. Blood Adv. 2022;6:5146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Stefano V, Za T, Ciminello A, Betti S, Rossi E. Haemostatic alterations induced by treatment with asparaginases and clinical consequences. Thromb Haemost. 2015;113:247–61.

    Article  PubMed  Google Scholar 

  39. Rank CU, Lynggaard LS, Als-Nielsen B, Stock W, Toft N, Nielsen OJ, et al. Prophylaxis of thromboembolism during therapy with asparaginase in adults with acute lymphoblastic leukaemia. Cochrane Database Syst Rev. 2020;10:CD013399.

    PubMed  Google Scholar 

  40. Sibai H, Chen R, Liu X, Falcone U, Schimmer A, Schuh A, et al. Anticoagulation prophylaxis reduces venous thromboembolism rate in adult acute lymphoblastic leukaemia treated with asparaginase-based therapy. Br J Haematol. 2020;191:748–54.

    Article  CAS  PubMed  Google Scholar 

  41. Zwicker JI, Wang T-F, DeAngelo DJ, Lauw MN, Connors JM, Falanga A, et al. The prevention and management of asparaginase-related venous thromboembolism in adults: guidance from the SSC on Hemostasis and Malignancy of the ISTH. J Thromb Haemost. 2020;18:278–84.

    Article  PubMed  Google Scholar 

  42. Santi RM, Ceccarelli M, Bernocco E, Monagheddu C, Evangelista A, Valeri F, et al. Khorana score and histotype predicts incidence of early venous thromboembolism in non-Hodgkin lymphomas. A pooled-data analysis of 12 clinical trials of Fondazione Italiana Linfomi (FIL). Thromb Haemost. 2017. https://doi.org/10.1160/TH16-11-0895.

    Article  PubMed  Google Scholar 

  43. Rupa-Matysek J, Gil L, Kaźmierczak M, Barańska M, Komarnicki M. Prediction of venous thromboembolism in newly diagnosed patients treated for lymphoid malignancies: validation of the Khorana Risk Score. Med Oncol. 2017;35:5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Caruso V, Di Castelnuovo A, Meschengieser S, Lazzari MA, de Gaetano G, Storti S, et al. Thrombotic complications in adult patients with lymphoma: a meta-analysis of 29 independent cohorts including 18,018 patients and 1149 events. Blood. 2010;115:5322–8.

    Article  CAS  PubMed  Google Scholar 

  45. Antic D, Milic N, Nikolovski S, Todorovic M, Bila J, Djurdjevic P, et al. Development and validation of multivariable predictive model for thromboembolic events in lymphoma patients. Am J Hematol. 2016;91:1014–9.

    Article  CAS  PubMed  Google Scholar 

  46. Lekovic D, Miljic P, Mihaljevic B. Increased risk of venous thromboembolism in patients with primary mediastinal large B cell lymphoma. Thromb Res. 2010;126:477–80.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou X, Teegala S, Huen A, Ji Y, Fayad L, Hagemeister FB, et al. Incidence and risk factors of venous thromboembolic events in lymphoma. Am J Med. 2010;123:935–41.

    Article  PubMed  Google Scholar 

  48. Lund JL, Østgård LS, Prandoni P, Sørensen HT, de Nully BP. Incidence, determinants and the transient impact of cancer treatments on venous thromboembolism risk among lymphoma patients in Denmark. Thromb Res. 2015;136:917–23.

    Article  CAS  PubMed  Google Scholar 

  49. Sanfilippo KM, Wang TF, Gage BF, Luo S, Riedell P, Carson KR. Incidence of venous thromboembolism in patients with non-Hodgkin lymphoma. Thromb Res. 2016;143:86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muslimani AA, Spiro TP, Chaudhry AA, Taylor HC, Daw HA. Venous thromboembolism in lymphoma: how effectively are we treating patients? Am J Clin Oncol. 2009;32:521–3.

    Article  PubMed  Google Scholar 

  51. Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22:414–23.

    Article  CAS  PubMed  Google Scholar 

  52. Charalampous C, Goel U, Kapoor P, Binder M, Buadi FK, Dingli D, et al. Thrombosis in multiple myeloma: risk estimation by induction regimen and association with overall survival. Am J Hematol. 2023;98:413–20.

    Article  CAS  PubMed  Google Scholar 

  53. Sborov DW, Baljevic M, Reeves B, Laubach J, Efebera YA, Rodriguez C, et al. Daratumumab plus lenalidomide, bortezomib and dexamethasone in newly diagnosed multiple myeloma: analysis of vascular thrombotic events in the GRIFFIN study. Br J Haematol. 2022;199:355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanfilippo KM, Luo S, Wang T-F, Fiala M, Schoen M, Wildes TM, et al. Predicting venous thromboembolism in multiple myeloma: development and validation of the IMPEDE VTE score. Am J Hematol. 2019;94:1176–84.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li A, Wu Q, Luo S, Warnick GS, Zakai NA, Libby EN, et al. Derivation and validation of a risk assessment model for immunomodulatory drug-associated thrombosis among patients with multiple myeloma. J Natl Compr Canc Netw. 2019;17:840–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Covut F, Sanfilippo KM. Mitigating the risk of venous thromboembolism in patients with multiple myeloma receiving immunomodulatory-based therapy. Hematol Am Soc Hematol Educ Program. 2022;2022:363–7.

    Article  Google Scholar 

  57. De Stefano V, Larocca A, Carpenedo M, Cavo M, Di Raimondo F, Falanga A, et al. Thrombosis in multiple myeloma: risk stratification, antithrombotic prophylaxis, and management of acute events. A consensus-based position paper from an ad hoc expert panel. Haematologica. 2022;107:2536–47.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chai-Adisaksopha C, Lam W, Hillis C. Major arterial events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a meta-analysis. Leuk Lymphoma. 2016;57:1300–10.

    Article  CAS  PubMed  Google Scholar 

  59. Douxfils J, Haguet H, Mullier F, Chatelain C, Graux C, Dogné J-M. Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta-analysis. JAMA Oncol. 2016;2:625–32.

    Article  PubMed  Google Scholar 

  60. Haguet H, Douxfils J, Mullier F, Chatelain C, Graux C, Dogné J-M. Risk of arterial and venous occlusive events in chronic myeloid leukemia patients treated with new generation BCR-ABL tyrosine kinase inhibitors: a systematic review and meta-analysis. Expert Opin Drug Saf. 2017;16:5–12.

    Article  CAS  PubMed  Google Scholar 

  61. Haguet H, Graux C, Mullier F, Dogné J-M, Douxfils J. Long-term survival, vascular occlusive events and efficacy biomarkers of first-line treatment of CML: a meta-analysis. Cancers. 2020. https://doi.org/10.3390/cancers12051242.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Haguet H, Bouvy C, Delvigne A-S, Modaffari E, Wannez A, Sonveaux P, et al. The risk of arterial thrombosis in patients with chronic myeloid leukemia treated with second and third generation BCR-ABL tyrosine kinase inhibitors may be explained by their impact on endothelial cells: an in-vitro study. Front Pharmacol. 2020;11:1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jain P, Kantarjian H, Jabbour E, Gonzalez GN, Borthakur G, Pemmaraju N, et al. Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: a phase 2 study. Lancet Haematol. 2015;2:e376–83.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Graham IM, Di Angelantonio E, Visseren F, De Bacquer D, Ference BA, Timmis A, et al. Systematic coronary risk evaluation (SCORE): JACC focus seminar 4/8. J Am Coll Cardiol. 2021;77:3046–57.

    Article  PubMed  Google Scholar 

  65. Caocci G, Mulas O, Abruzzese E, Luciano L, Iurlo A, Attolico I, et al. Arterial occlusive events in chronic myeloid leukemia patients treated with ponatinib in the real-life practice are predicted by the Systematic Coronary Risk Evaluation (SCORE) chart. Hematol Oncol. 2019;37:296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singh AP, Glennon MS, Umbarkar P, Gupte M, Galindo CL, Zhang Q, et al. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Cardiovasc Res. 2019;115:966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mauro MJ, Hughes TP, Kim D-W, Rea D, Cortes JE, Hochhaus A, et al. Asciminib monotherapy in patients with CML-CP without BCR::ABL1 T315I mutations treated with at least two prior TKIs: 4-year phase 1 safety and efficacy results. Leukemia. 2023;37:1048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057–69.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guy A, Poisson J, James C. Pathogenesis of cardiovascular events in BCR-ABL1-negative myeloproliferative neoplasms. Leukemia. 2021;35:935–55.

    Article  CAS  PubMed  Google Scholar 

  70. Tefferi A, Barbui T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:1465–87.

    Article  CAS  PubMed  Google Scholar 

  71. Vannucchi AM, Antonioli E, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia. 2007;21:1952–9.

    Article  CAS  PubMed  Google Scholar 

  72. Carobbio A, Antonioli E, Guglielmelli P, Vannucchi AM, Delaini F, Guerini V, et al. Leukocytosis and risk stratification assessment in essential thrombocythemia. J Clin Oncol. 2008;26:2732–6.

    Article  CAS  PubMed  Google Scholar 

  73. Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120:5128–33 (quiz 5252).

    Article  CAS  PubMed  Google Scholar 

  74. Guglielmelli P, Loscocco GG, Mannarelli C, Rossi E, Mannelli F, Ramundo F, et al. JAK2V617F variant allele frequency >50% identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 2021;11:199.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hobbs CM, Manning H, Bennett C, Vasquez L, Severin S, Brain L, et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood. 2013;122:3787–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Edelmann B, Gupta N, Schnoeder TM, Oelschlegel AM, Shahzad K, Goldschmidt J, et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest. 2018;128:4359–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matsuura S, Thompson CR, Belghasem ME, Bekendam RH, Piasecki A, Leiva O, et al. Platelet dysfunction and thrombosis in JAK2V617F-mutated primary myelofibrotic mice. Arterioscler Thromb Vasc Biol. 2020;40:e262–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berk PD, Goldberg JD, Donovan PB, Fruchtman SM, Berlin NI, Wasserman LR. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol. 1986;23:132–43.

    CAS  PubMed  Google Scholar 

  79. Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23:2224–32.

    Article  PubMed  Google Scholar 

  80. Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52.

    Article  CAS  PubMed  Google Scholar 

  81. De Stefano V, Za T, Rossi E, Vannucchi AM, Ruggeri M, Elli E, et al. Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: incidence, risk factors, and effect of treatments. Haematologica. 2008;93:372–80.

    Article  PubMed  Google Scholar 

  82. Cerquozzi S, Barraco D, Lasho T, Finke C, Hanson CA, Ketterling RP, et al. Risk factors for arterial versus venous thrombosis in polycythemia vera: a single center experience in 587 patients. Blood Cancer J. 2017;7:662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carobbio A, Ferrari A, Masciulli A, Ghirardi A, Barosi G, Barbui T. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2019;3:1729–37.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350:114–24.

    Article  CAS  PubMed  Google Scholar 

  85. Squizzato A, Romualdi E, Passamonti F, Middeldorp S. Antiplatelet drugs for polycythaemia vera and essential thrombocythaemia. Cochrane Database Syst Rev. 2013;CD006503.

  86. De Stefano V, Finazzi G, Barbui T. Antithrombotic therapy for venous thromboembolism in myeloproliferative neoplasms. Blood Cancer J. 2018;8:65.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Podoltsev NA, Zhu M, Zeidan AM, Wang R, Wang X, Davidoff AJ, et al. The impact of phlebotomy and hydroxyurea on survival and risk of thrombosis among older patients with polycythemia vera. Blood Adv. 2018;2:2681–90.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368:22–33.

    Article  CAS  PubMed  Google Scholar 

  89. Alvarez-Larrán A, Pereira A, Cervantes F, Arellano-Rodrigo E, Hernández-Boluda J-C, Ferrer-Marín F, et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood. 2012;119:1363–9.

    Article  PubMed  Google Scholar 

  90. Barbui T, Vannucchi AM, Finazzi G, Finazzi MC, Masciulli A, Carobbio A, et al. A reappraisal of the benefit-risk profile of hydroxyurea in polycythemia vera: a propensity-matched study. Am J Hematol. 2017;92:1131–6.

    Article  CAS  PubMed  Google Scholar 

  91. Barbui T, De Stefano V, Ghirardi A, Masciulli A, Finazzi G, Vannucchi AM. Different effect of hydroxyurea and phlebotomy on prevention of arterial and venous thrombosis in Polycythemia Vera. Blood Cancer J. 2018;8:124.

    Article  PubMed  PubMed Central  Google Scholar 

  92. De Stefano V, Rossi E, Carobbio A, Ghirardi A, Betti S, Finazzi G, et al. Hydroxyurea prevents arterial and late venous thrombotic recurrences in patients with myeloproliferative neoplasms but fails in the splanchnic venous district. Pooled analysis of 1500 cases. Blood Cancer J. 2018;8:112.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Beckman JD, DaSilva A, Aronovich E, Nguyen A, Nguyen J, Hargis G, et al. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost. 2023;21:1366–80.

    Article  PubMed  Google Scholar 

  94. Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–35.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Masciulli A, Ferrari A, Carobbio A, Ghirardi A, Barbui T. Ruxolitinib for the prevention of thrombosis in polycythemia vera: a systematic review and meta-analysis. Blood Adv. 2020;4:380–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harrison CN, Nangalia J, Boucher R, Jackson A, Yap C, O’Sullivan J, et al. Ruxolitinib versus best available therapy for polycythemia vera intolerant or resistant to hydroxycarbamide in a randomized trial. J Clin Oncol. 2023;41:3534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5: e369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carobbio A, Finazzi G, Antonioli E, Guglielmelli P, Vannucchi AM, Delaini F, et al. Thrombocytosis and leukocytosis interaction in vascular complications of essential thrombocythemia. Blood. 2008;112:3135–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Campbell PJ, MacLean C, Beer PA, Buck G, Wheatley K, Kiladjian J-J, et al. Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of the prospective PT1 cohort. Blood. 2012;120:1409–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cortelazzo S, Finazzi G, Ruggeri M, Vestri O, Galli M, Rodeghiero F, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med. 1995;332:1132–6.

    Article  CAS  PubMed  Google Scholar 

  102. Godfrey AL, Campbell PJ, MacLean C, Buck G, Cook J, Temple J, et al. Hydroxycarbamide plus aspirin versus aspirin alone in patients with essential thrombocythemia age 40 to 59 years without high-risk features. J Clin Oncol. 2018;36:3361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353:33–45.

    Article  CAS  PubMed  Google Scholar 

  104. Gisslinger H, Gotic M, Holowiecki J, Penka M, Thiele J, Kvasnicka H-M, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121:1720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alvarez-Larrán A, Pereira A, Guglielmelli P, Hernández-Boluda JC, Arellano-Rodrigo E, Ferrer-Marín F, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016;101:926–31.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Falchi L, Kantarjian HM, Verstovsek S. Assessing the thrombotic risk of patients with essential thrombocythemia in the genomic era. Leukemia. 2017;31:1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:1599–613.

    Article  CAS  PubMed  Google Scholar 

  108. Meyer G, Marjanovic Z, Valcke J, Lorcerie B, Gruel Y, Solal-Celigny P, et al. Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med. 2002;162:1729–35.

    Article  CAS  PubMed  Google Scholar 

  109. Lee AYY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349:146–53.

    Article  CAS  PubMed  Google Scholar 

  110. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an oral factor xa inhibitorwith low molecular weight heparin in patients with cancer with venous thromboembolism: results of arandomized trial (SELECT-D). J Clin Oncol. 2018;36:2017–23.

    Article  CAS  PubMed  Google Scholar 

  111. Chakraborty R, Rybicki L, Wei W, Valent J, Faiman BM, Samaras CJ, et al. Abnormal metaphase cytogenetics predicts venous thromboembolism in myeloma: derivation and validation of the PRISM score. Blood. 2022;140:2443–50.

    Article  CAS  PubMed  Google Scholar 

  112. Piedra K, Peterson T, Tan C, Orozco J, Hultcrantz M, Hassoun H, et al. Comparison of venous thromboembolism incidence in newly diagnosed multiple myeloma patients receiving bortezomib, lenalidomide, dexamethasone (RVD) or carfilzomib, lenalidomide, dexamethasone (KRD) with aspirin or rivaroxaban thromboprophylaxis. Br J Haematol. 2022;196:105–9.

    Article  CAS  PubMed  Google Scholar 

  113. Ronner L, Mascarenhas J, Moshier EL. Response to meta-analysis of leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera. Blood Adv. 2019;3010–2.

  114. Alvarez-Larrán A, Cervantes F, Pereira A, Arellano-Rodrigo E, Pérez-Andreu V, Hernández-Boluda J-C, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010;116:1205–10.

    Article  PubMed  Google Scholar 

  115. Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood. 2011;117:5857–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Fukatsu.

Ethics declarations

Conflict of interest

TI received honoraria from Alexion Pharmaceuticals, Chugai Pharmaceutical, Nippon Shinyaku, Pfizer Japan, and Sanofi KK; received research funding from AbbVie, Asahi Kasei Pharma Corporation, Astellas Pharma, Janssen Japan, Nippon Shinyaku, Novartis, Otsuka Pharmaceutical, and Takeda Pharmaceutical Company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukatsu, M., Ikezoe, T. Cancer-associated thrombosis in hematologic malignancies. Int J Hematol (2024). https://doi.org/10.1007/s12185-023-03690-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12185-023-03690-z

Keywords

Navigation