Skip to main content
Log in

A novel variant fibrinogen, AαE11del, demonstrating the importance of AαE11 residue in thrombin binding

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Introduction

We identified a novel heterozygous AαE11del variant in a patient with congenital dysfibrinogenemia. This mutation is located in fibrinopeptide A (FpA). We analyzed the effect of AαE11del on the catalyzation of thrombin and batroxobin and simulated the stability of the complex structure between the FpA fragment (AαG6-V20) peptide and thrombin.

Materials and methods

We performed fibrin polymerization and examined the kinetics of FpA release catalyzed by thrombin and batroxobin using purified plasma fibrinogen. To clarify the association between the AαE11 residue and thrombin, we calculated binding free energy using molecular dynamics simulation trajectories.

Results

Increasing the thrombin concentration improved release of FpA from the patient’s fibrinogen to approximately 90%, compared to the previous 50% of that of normal fibrinogen. Fibrin polymerization of variant fibrinogen also improved. In addition, greater impairment of variant FpA release from the patient’s fibrinogen was observed with thrombin than with batroxobin. Moreover, the calculated binding free energy showed that the FpA fragment–thrombin complex became unstable due to the missing AαE11 residue.

Conclusions

Our findings indicate that the AαE11 residue is involved in FpA release in thrombin catalyzation more than in batroxobin catalyzation, and that the AαE11 residue stabilizes FpA fragment–thrombin complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem United States. 2005;70:247–99.

    Article  CAS  Google Scholar 

  2. Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem. 2017;82:405–56.

    Article  CAS  Google Scholar 

  3. Huang S, Cao Z, Chung DW, Davie EW. The role of betagamma and alphagamma complexes in the assembly of human fibrinogen. J Biol Chem United States. 1996;271:27942–7.

    Article  CAS  Google Scholar 

  4. Medved L, Weisel JW. Haemostasis F and FXS of SSC of IS on T and recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost. 2009;7:355–9.

    Article  CAS  Google Scholar 

  5. Blombäck B, Hessel B, Hogg D, Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation. Nature England. 1978;275:501–5.

    Article  Google Scholar 

  6. Aronson DL. Comparison of the actions of thrombin and the thrombin-like venom enzymes ancrod and batroxobin. Thromb Haemost Germany. 1976;36:9–13.

    Article  CAS  Google Scholar 

  7. Rose T, Di Cera E. Three-dimensional modeling of thrombin-fibrinogen interaction. J Biol Chem United States. 2002;277:18875–80.

    Article  CAS  Google Scholar 

  8. Groupe d’etude sur l’hemostase et la thrombose. 2020 Human fibrinogen database release 50. Available from: https://site.geht.org/base-de-donnees-fibrinogene/. Accessed on June 1 2021

  9. Martin PD, Robertson W, Turk D, Huber R, Bode W, Edwards BF. The structure of residues 7-16 of the A alpha-chain of human fibrinogen bound to bovine thrombin at resolution. J Biol Chem. 1992;267:7911–20.

    Article  CAS  Google Scholar 

  10. Kaido T, Yoda M, Kamijo T, Taira C, Higuchi Y, Okumura N. Comparison of molecular structure and fibrin polymerization between two Bβ-chain N-terminal region fibrinogen variants, Bβp. G45C and Bβp.R74C. Int J Hematol. 2020;112:331–40.

    Article  CAS  Google Scholar 

  11. Terasawa F, Okumura N, Kitano K, Hayashida N, Shimosaka M, Okazaki M, et al. Hypofibrinogenemia associated with a heterozygous missense mutation γ153Cys to Arg (Matsumoto IV). In vitro expression demonstrates defective secretion of the variant fibrinogen. Blood. 1999;94:4122–31.

    Article  CAS  Google Scholar 

  12. Takebe M, Soe G, Kohno I, Sugo T, Matsuda M. Calcium ion-dependent monoclonal antibody against human fibrinogen: preparation, characterization, and application to fibrinogen purification. Thromb Haemost Germany. 1995;73:662–7.

    Article  CAS  Google Scholar 

  13. Gorkun OV, Veklich YI, Weisel JW, Lord ST. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen. Blood. 1997;89:4407–14.

    Article  CAS  Google Scholar 

  14. Mihalyi E. Physicochemical studies of bovine fibrinogen. IV. Ultraviolet absorption and its relation to the structure of the molecule. Biochemistry. 1968;7:208–23.

    Article  CAS  Google Scholar 

  15. Ikeda M, Kobayashi T, Arai S, Mukai S, Takezawa Y, Terasawa F, et al. Recombinant γT305A fibrinogen indicates severely impaired fibrin polymerization due to the aberrant function of hole “A” and calcium binding sites. Thromb Res United States. 2014;134:518–25.

    Article  CAS  Google Scholar 

  16. Martin PD, Malkowski MG, DiMaio J, Konishi Y, Ni F, Edwards BF. Bovine thrombin complexed with an uncleavable analog of residues 7–19 of fibrinogen A alpha: geometry of the catalytic triad and interactions of the P1’, P2’, and P3’ substrate residues. Biochemistry. 1996;35:13030–9.

    Article  CAS  Google Scholar 

  17. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol England. 1993;234:779–815.

    Article  CAS  Google Scholar 

  18. Shen M-Y, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.

    Article  CAS  Google Scholar 

  19. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

    Article  Google Scholar 

  20. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ (1) and χ (2) dihedral angles. J Chem Theory Comput. 2012;8:3257–73.

    Article  CAS  Google Scholar 

  21. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  CAS  Google Scholar 

  22. Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics. 2018;19:132.

    Article  Google Scholar 

  23. Yu H, Wang M, Xuan N, Shang Z, Wu J. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. J Zhejiang Univ Sci B. 2015;16:883–96.

    Article  CAS  Google Scholar 

  24. Schrödinger L. 2015 The open-source PyMOL Molecular Graphics System, Version 2.4.

  25. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res United States. 2000;33:889–97.

    Article  CAS  Google Scholar 

  26. Kumari R, Kumar R, Lynn A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J Chem Inf Model Am Chem Soc. 2014;54:1951–62.

    Article  CAS  Google Scholar 

  27. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci. 2001. https://doi.org/10.1073/pnas.181342398.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kehl M, Lottspeich F, Henschen A. Analysis of human fibrinopeptides by high-performance liquid chromatography. Hoppe Seylers Z Physiol Chem Germany. 1981;362:1661–4.

    CAS  Google Scholar 

  29. Niwa K, Yaginuma A, Nakanishi M, Wada Y, Sugo T, Asakura S, et al. Fibrinogen Mitaka II: a hereditary dysfibrinogen with defective thrombin binding caused by an A alpha Glu-11 to Gly substitution. Blood. 1993;82:3658–63.

    Article  CAS  Google Scholar 

  30. Denninger MH, Finlayson JS, Reamer LA, Parquet-Gernez A, Goudemand M, Menache D. Congenital dysfibrinogenemia: fibrinogen Lille. Thromb Res. 1978;13:453–66.

    Article  CAS  Google Scholar 

  31. Shapiro SE, Phillips E, Manning RA, Morse CV, Murden SL, Laffan MA, et al. Clinical phenotype, laboratory features and genotype of 35 patients with heritable dysfibrinogenaemia. Br J Haematol England. 2013;160:220–7.

    Article  CAS  Google Scholar 

  32. van Nispen JW, Hageman TC, Scheraga HA. Mechanism of action of thrombin on fibrinogen. The reaction of thrombin with fibrinogen-like peptides containing 11, 14, and 16 residues. Arch Biochem Biophys. 1977;182:227–43.

    Article  Google Scholar 

  33. Meinwald YC, Martinelli RA, van Nispen JW, Scheraga HA. Mechanism of action of thrombin on fibrinogen. Size of the A alpha fibrinogen-like peptide that contacts the active site of thrombin. Biochemistry. 1980;19:3820–5.

    Article  CAS  Google Scholar 

  34. Marsh HCJ, Meinwald YC, Thannhauser TW, Scheraga HA. Mechanism of action of thrombin on fibrinogen. Kinetic evidence for involvement of aspartic acid at position P10. Biochemistry. 1983;22:4170–4.

    Article  CAS  Google Scholar 

  35. Stubbs MT, Oschkinat H, Mayr I, Huber R, Angliker H, Stone SR, et al. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur J Biochem. 1992;206:187–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Takeshi Sato (Soka Municipal Hospital, Soka, Saitama), for the patient referral. This work was supported by JSPS KAKENHI Grant Number JP20K07799 (Nobuo Okumura).

Author information

Authors and Affiliations

Authors

Contributions

TK and MY performed the research and analyzed the data. TK wrote the manuscript. TK, SA, KY, and NO designed the research and discussed the data. NO and SA reviewed the manuscript.

Corresponding author

Correspondence to Nobuo Okumura.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaido, T., Yoda, M., Kamijo, T. et al. A novel variant fibrinogen, AαE11del, demonstrating the importance of AαE11 residue in thrombin binding. Int J Hematol 114, 591–598 (2021). https://doi.org/10.1007/s12185-021-03200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03200-z

Keywords

Navigation