Skip to main content

Advertisement

Log in

EWSR1 overexpression is a pro-oncogenic event in multiple myeloma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is cytogenetically, genetically and molecularly heterogenous even among subclones in one patient, therefore, it is essential to identify both frequent and patient-specific drivers of molecular abnormality. Following previous molecular investigations, we in this study investigated the expression patterns and function of the Ewing sarcoma breakpoint region 1 (EWSR1) gene in MM. The EWSR1 transcriptional level in CD138-positive myeloma cells was higher in 36.4% of monoclonal gammopathy of undetermined significance, in 67.4% of MM patients compared with normal plasma cells, and significantly higher in ten human myeloma-derived cell lines (HMCLs) examined. EWSR1 gene knockdown caused growth inhibition with an increase of apoptotic cells in NCI-H929 and KMS-12-BM cells. Gene expression profiling using microarray analysis suggested EWSR1 gene knockdown caused transcriptional modulation of several genes associated with processes such as cell proliferation, cell motility, cell metabolism, and gene expression. Of particular, EWSR1 gene knockdown caused upregulation of let-7c and downregulation of its known targets K-RAS and AKT. Finally, our analysis using community database suggested that high EWSR1 expression positively associates with poor prognosis and advanced disease stage in MM. These findings suggest that EWSR1 overexpression is a pro-oncogenic molecular abnormality that may participate in MM progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int J Hematol. 2020;111(4):496–511.

    PubMed  Google Scholar 

  2. An G, Yan Y, Xu Y, Mao X, Liu J, Fan H, et al. Monitoring the cytogenetic architecture of minimal residual plasma cells indicates therapy-induced clonal selection in multiple myeloma. Leukemia. 2020;34(2):578–88.

    CAS  PubMed  Google Scholar 

  3. Schürch CM, Rasche L, Frauenfeld L, Weinhold N, Fend F. A review on tumor heterogeneity and evolution in multiple myeloma: pathological, radiological, molecular genetics, and clinical integration. Virchows Arch. 2020;476(3):337–51.

    PubMed  Google Scholar 

  4. Chim CS, Kumar SK, Orlowski RZ, Cook G, Richardson PG, Gertz MA, et al. Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia. 2018;32(2):252–62.

    CAS  PubMed  Google Scholar 

  5. Tamura H. Immunopathogenesis and immunotherapy of multiple myeloma. Int J Hematol. 2018;107(3):278–85.

    CAS  PubMed  Google Scholar 

  6. Ozaki S, Handa H, Saitoh T, Murakami H, Itagaki M, Asaoku H, et al. Trends of survival in patients with multiple myeloma in Japan: a multicenter retrospective collaborative study of the Japanese Society of Myeloma. Blood Cancer J. 2015;5(9):e349.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mey UJ, Leitner C, Driessen C, Cathomas R, Klingbiel D, Hitz F. Improved survival of older patients with multiple myeloma in the era of novel agents. Hematol Oncol. 2016;34(4):217–23.

    PubMed  Google Scholar 

  8. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.

    CAS  PubMed  Google Scholar 

  9. Agnelli L, Tassone P, Neri A. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing. Expert Opin Biol Ther. 2013;13(Suppl 1):S55-68.

    CAS  PubMed  Google Scholar 

  10. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84.

    CAS  PubMed  Google Scholar 

  11. Kassambara A, Gourzones-Dmitriev C, Sahota S, Rème T, Moreaux J, Goldschmidt H, et al. A DNA repair pathway score predicts survival in human multiple myeloma: the potential for therapeutic strategy. Oncotarget. 2014;5(9):2487–98.

    PubMed  PubMed Central  Google Scholar 

  12. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    PubMed  PubMed Central  Google Scholar 

  13. Claudio JO, Masih-Khan E, Tang H, Gonçalves J, Voralia M, Li ZH, et al. A molecular compendium of genes expressed in multiple myeloma. Blood. 2002;100(6):2175–86.

    CAS  PubMed  Google Scholar 

  14. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood. 2002;99(5):1745–57.

    CAS  PubMed  Google Scholar 

  15. Kovar H. Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma. 2011;2011:83747

  16. Paronetto MP. Ewing sarcoma protein: a key player in human cancer. Int J Cell Biol. 2013;2013:642853.

    PubMed  PubMed Central  Google Scholar 

  17. Lee J, Nguyen PT, Shim HS, Hyeon SJ, Im H, Choi MH, et al. EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1938–45.

    CAS  PubMed  Google Scholar 

  18. Kim Y, Kang YS, Lee NY, Kim KY, Hwang YJ, Kim HW, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11(5):796–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ouyang H, Zhang K, Fox-Walsh K, Yang Y, Zhang C, Huang J, et al. The RNA binding protein EWS is broadly involved in the regulation of pri-miRNA processing in mammalian cells. Nucl Acids Res. 2017;45(21):12481–95.

    CAS  PubMed  Google Scholar 

  20. Thway K, Fisher C. Mesenchymal tumors with EWSR1 gene rearrangements. Surg Pathol Clin. 2019;12(1):165–90.

    PubMed  Google Scholar 

  21. Park JH, Kang HJ, Kang SI, Lee JE, Hur J, Ge K, et al. A multifunctional protein, EWS, is essential for early brown fat lineage determination. Dev Cell. 2013;26(4):393–404.

    CAS  PubMed  Google Scholar 

  22. Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci. 2019;110(5):1536–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.

    PubMed  Google Scholar 

  24. Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, Chinen Y, Tanba K, Kuwahara-Ota S et al. (2020) Serine-227 in the N-terminal kinase domain of RSK2 is a potential therapeutic target for mantle cell lymphoma. Cancer Med (In print)

  25. Tatekawa S, Chinen Y, Ri M, Narita T, Shimura Y, Matsumura-Kimoto Y, et al. Epigenetic repression of miR-375 is the dominant mechanism for constitutive activation of the PDPK1/RPS6KA3 signalling axis in multiple myeloma. Br J Haematol. 2017;178(4):534–46.

    CAS  PubMed  Google Scholar 

  26. Tsukamoto T, Nakahata S, Sato R, Kanai A, Nakano M, Chinen Y, et al. BRD4-regulated molecular targets in mantle cell lymphoma: insights into targeted therapeutic approach. Cancer Genomics Proteomics. 2020;17(1):77–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamamoto-Sugitani M, Kuroda J, Ashihara E, Nagoshi H, Kobayashi T, Matsumoto Y, et al. Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci USA. 2011;108(42):17468–73.

    CAS  PubMed  Google Scholar 

  28. Mizuno Y, Chinen Y, Tsukamoto T, Takimoto-Shimomura T, Matsumura-Kimoto Y, Fujibayashi Y, et al. A novel method of amplified fluorescent in situ hybridization for detection of chromosomal microdeletions in B cell lymphoma. Int J Hematol. 2019;109(5):593–602.

    CAS  PubMed  Google Scholar 

  29. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(3):452–8.

    CAS  Google Scholar 

  30. Olson HM, Nechiporuk AV. Using zebrafish to study collective cell migration in development and disease. Front Cell Dev Biol. 2018;6:83.

    PubMed  PubMed Central  Google Scholar 

  31. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107(1):84–94.

    CAS  PubMed  Google Scholar 

  32. Wang JR, Liu B, Zhou L, Huang YX. MicroRNA-124-3p suppresses cell migration and invasion by targeting ITGA3 signaling in bladder cancer. Cancer Biomark. 2019;24(2):159–72.

    CAS  PubMed  Google Scholar 

  33. Jiang H, Zhou Z, Jin S, Xu K, Zhang H, Xu J, et al. PRMT9 promotes hepatocellular carcinoma invasion and metastasis via activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Sci. 2018;109(5):1414–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Yuan JH, Wang SB, Yang F, Yuan SX, Ye C, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2. Hepatology. 2014;60(4):1278–90.

    CAS  PubMed  Google Scholar 

  35. Luo W, Gangwal K, Sankar S, Boucher KM, Thomas D, Lessnick SL. GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance. Oncogene. 2009;28(46):4126–32.

    CAS  PubMed  Google Scholar 

  36. Winkler GS. The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol. 2010;222(1):66–72.

    CAS  PubMed  Google Scholar 

  37. Gong C, Qu S, Lv XB, Liu B, Tan W, Nie Y, et al. BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat Commun. 2014;5:540.

    Google Scholar 

  38. Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in cancer. Front Genet. 2017;8:31.

    PubMed  PubMed Central  Google Scholar 

  39. Levy R, Biran A, Poirier F, Raz A, Kloog Y. Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA. PLoS ONE. 2011;6:e27490.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mulholland EJ, Green WP, Buckley NE, McCarthy HO. Exploring the potential of MicroRNA Let-7c as a therapeutic for prostate cancer. Mol Ther Nucl Acids. 2019;18:927–37.

    CAS  Google Scholar 

  41. Wu D, Zhou Y, Pan H, Zhou J, Fan Y, Qu P. microRNA-99a inhibiting cell proliferation, migration and invasion by targeting fibroblast growth factor receptor 3 in bladder cancer. Oncol Lett. 2014;7(4):1219–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol. 2007;138(2):176–85.

    CAS  PubMed  Google Scholar 

  43. van Rhee F, Mitchell A, Heuck C, Grazziutti M, Jethava Y, Khan RZ, et al. Total therapy 4 (TT4) for GEP70-defined low risk clinical multiple myeloma (CMM): results of patients randomized to a standard v light Rrm (S-TT4 v L-TT4). Blood. 2014;124(21):1199.

    Google Scholar 

  44. Jethava Y, Mitchell A, Zangari M, Waheed S, Schinke C, Thanendrarajan S, et al. Dose-dense and less dose-intense total therapy 5 for gene expression profiling-defined high-risk multiple myeloma. Blood Cancer J. 2016;6(7):e453.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bladé J, Rosiñol L. Refining, “total therapy” for myeloma. Blood. 2010;115(21):4152–3.

    PubMed  Google Scholar 

  46. Wang YL, Chen H, Zhan YQ, Yin RH, Li CY, Ge CH, et al. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation. Cell Cycle. 2016;15(16):2202–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Watford W, Li C, Parmelee A, Bryant MA, Deng C, et al. Ewing sarcoma gene EWS is essential for meiosis and b lymphocyte development. J Clin Invest. 2007;117(5):1314–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Park H, Turkalo TK, Nelson K, Folmsbee SS, Robb C, Roper B, et al. Ewing sarcoma EWS protein regulates midzone formation by recruiting aurora B kinase to the midzone. Cell Cycle. 2014;13(15):2391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Andersson MK, Ståhlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, et al. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 2008;9:37.

    PubMed  PubMed Central  Google Scholar 

  50. Chinen Y, Kuroda J, Shimura Y, Nagoshi H, Kiyota M, Yamamoto-Sugitani M, et al. Phosphoinositide protein kinase PDPK1 Is a crucial cell signaling mediator in multiple myeloma. Cancer Res. 2014;74(24):7418–29.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. N. Sakamoto-Inada and Mr. N. Kawasumi for their excellent scientific support. The study was supported in part by National Cancer Center Research and Development Funds (26-A-4, 29-A-3), a Grant-in-Aid for Clinical Cancer Research (H26-kakushin-teki-gan-ippan-074) from the Ministry of Health, Labour and Welfare of Japan, by AMED (JP16ck0106077h003, JP17ck0106348h0001, JP18ck0106348h0002 and JP19ck0106348h0003) (JK), by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology of Japan [MEXT KAKENHI 16K09856 (MT) and MEXT KAKENHI 18K08367 (TK)], and by a Japanese Society for Myeloma Research Award (YS).

Author information

Authors and Affiliations

Authors

Contributions

DN, YC, RI, YF, SK-O, JY, TT-S, YM–K, TT, YS, TK, SH, MT, HH and JK performed experiments and analyzed data. DN and JK drafted the manuscript. DN, YC and JK designed the study. JK supervised the research.

Corresponding author

Correspondence to Junya Kuroda.

Ethics declarations

Conflict of interest

Y.F. is an employee of Nippon Shinyaku. J.K. has received research funding from Bristol-Myers Squibb, Sysmex, Celgene, Ono Pharmaceutical, Otsuka Pharmaceutical, Sanofi, Kyowa Kirin, Chugai Pharmaceutical, Eisai, Astellas Pharma, Dainippon Sumitomo Pharma, Nippon Shinyaku, Takeda, Shionogi, Asahi Kasei, Daiichi Sankyo, MSD, Taiho Pharmaceutical, Fujimoto Pharmaceutical and Pfizer, has received honoraria from Bristol-Myers Squibb, Janssen Pharmaceutical K.K, Celgene Corporation, Ono Pharmaceutical, Takeda, Sanofi, Kyowa Kirin, Chugai Pharmaceutical, Eisai, Astellas Pharma, Nippon Shinyaku, Dainippon Sumitomo Pharma, Daiichi Sankyo, Fujimoto Pharmaceutical, Abbvie and Otsuka Pharmaceutical; and is a consultant for Janssen Pharmaceutical K.K, Celgene, Bristol-Myers Squibb, Sanofi and Abbvie. H.H. has received research funding from Celgene, Takeda, Ono Pharmaceutical, Kyowa Kirin, Sanofi, MSD, Chugai Pharmaceutical, Shionogi, Bayer, Eizai, and Astellas Pharma; has received honoraria from Janssen, Celgene, Takeda, Sanofi and Ono; and is a consultant for Janssen, Takeda and Celgene. M.T. has received research funding from Kyowa Kirin, Chugai Pharmaceutical, Eisai, and Astellas Pharma. T.K. has received honoraria from Chugai Pharmaceutical, Ono Pharmaceutical, Eisai, and Nippon Shinyaku. T.T. has received research funding from Nippon Shinyaku. Others have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, D., Chinen, Y., Isa, R. et al. EWSR1 overexpression is a pro-oncogenic event in multiple myeloma. Int J Hematol 113, 381–394 (2021). https://doi.org/10.1007/s12185-020-03027-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-03027-0

Keywords

Navigation