Skip to main content

Advertisement

Log in

Molecular basis of clonal evolution in multiple myeloma

  • Progress in Hematology
  • Recent Advances in Biology and Treatment of Multiple Myeloma
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The treatment outcome of multiple myeloma (MM) is worse than expected from the average numbers of non-synonymous mutations, which are roughly correlated with the prognosis of cancer patients. The refractoriness of MM may be ascribed to the complex genomic architecture and clonal behavior of the disease. In MM, disease progression is accomplished by branching patterns of subclonal evolution from reservoir clones with a propagating potential and/or the emergence of minor clones, which already exist at the MGUS stage and outcompete other clones through selective pressure mainly by therapeutic agents. Each subclone harbors novel mutations and distinct phenotypes including drug sensitivities. In general, mature clones are highly sensitive to proteasome inhibitors (PIs), whereas immature clones are resistant to PIs but could be eradicated by immunomodulatory drugs (IMiDs). The branching evolution is a result of the fitness of different clones to microenvironment and their evasion of immune surveillance; therefore, IMiDs are effective for MM with this pattern of evolution. In contrast, ~ 20% of MM evolve neutrally in the context of strong oncogenic drivers, such as high-risk IgH translocations, and are relatively resistant to IMiDs. Further understanding of the genomic landscape and the pattern of clonal evolution may contribute to the development of more effective treatment strategies for MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Walker et al. [13] with permission through Copyright Clearance Center, Inc

Fig. 6

Adapted from Bolli et al. [14] with permission through Copyright Clearance Center, Inc

Fig. 7
Fig. 8

Adapted from Johnson et al. [69] with permission through Copyright Clearance Center, Inc

Fig. 9

Adapted from Rasche et al. [70] with permission through Copyright Clearance Center, Inc

Similar content being viewed by others

References

  1. Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H et al. Cancer incidence and incidence rates in Japan in 2009: a study of 32 population-based cancer registries for the monitoring of Cancer incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2015;45:884–891

    Article  PubMed  Google Scholar 

  2. Kumar SK, Dispenzieri A, Lacy MQ. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–1128

    Article  CAS  PubMed  Google Scholar 

  3. Fonseca R, Abouzaid S, Bonafede M, Cai Q, Parikh K, Cosler L, Richardson P. Trends in overall survival and costs of multiple myeloma, 2000–2014. Leukemia. 2017;31:1915–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Usmani SZ, Hoering A, Cavo M, San Miguel J, Goldschimdt H, Hajek R. Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma—an IMWG research project. Blood Cancer J. 2018;8:123

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ozaki S, Handa H, Saitoh T, Murakami H, Itagaki M, Asaoku H. Trends of survival in patients with multiple myeloma in Japan: a multicenter retrospective collaborative study of the Japanese society of myeloma. Blood Cancer J. 2015;5:e349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. LB Alexandrov S Nik-Zainal DC Wedge 2013 Signatures of mutational processes in human cancer. Nature. 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egan JB, Shi C-X, Tembe W, et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120:1060–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120:1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood. 2012;120:1077–1086

    Article  CAS  PubMed  Google Scholar 

  11. Weston-Bell N, Gibson J, John M, Ennis S, Pfeifer S, Cezard T, et al. Exome sequencing in tracking clonal evolution in multiple myeloma following therapy. Leukemia. 2013;27:1188–1191

    Article  CAS  PubMed  Google Scholar 

  12. Magrangeas F, Avet-Loiseau H, Gouraud W, et al. Minor clone provides a reservoir for relapse in multiple myeloma. Leukemia. 2013;27:473–481

    Article  CAS  PubMed  Google Scholar 

  13. Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28:384–390

    Article  PubMed  Google Scholar 

  14. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997

    Article  CAS  PubMed  Google Scholar 

  15. Lohr JG, Stojanov P, Carter LS, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia. 2014;28:1705–1715

    Article  CAS  PubMed  Google Scholar 

  17. Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, et al. Mutational spectrum, copy number changes, and outcome: Results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33:3911–3920

    Article  CAS  PubMed  Google Scholar 

  18. Weinhold N, Ashby C, Rasche L, Chavan SS, Stein C, Stephens OW, Tytarenko R, et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood. 2016;128(13):1735–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laganà A, Perumal D, Melnekoff D, Readhead B, Kidd BA, Leshchenko V, et al. Integrative network analysis identifies novel drivers of pathogenesis and progression in newly diagnosed multiple myeloma. Leukemia. 2018;32:120–130

    Article  CAS  PubMed  Google Scholar 

  20. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bolli N, Biancon G, Moarii M, Gimondi S, Li Y, de Philippis C, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones JR, Weinhold N, Ashby C, Walker BA, Wardell C, Pawlyn C, et al. Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica. 2019;104:1440–1450

    Article  PubMed  PubMed Central  Google Scholar 

  23. Walker BA, Wardell CP, Johnson DC, et al. Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood. 2013;121:3413–3419

    Article  CAS  PubMed  Google Scholar 

  24. Lakshman A, Alhaj Moustafa M, Rajkumar SV, Dispenzieri A, Gertz MA, Buadi FK, et al. Natural history of t(11;14) multiple myeloma. Leukemia. 2018;32:131–138

    Article  CAS  PubMed  Google Scholar 

  25. Pawlyn C, Melchor L, Murison A, Wardell CP, Brioli A, Boyle EM, et al. Coexistent hyperdiploidy does not abrogate poor prognosis in myeloma with adverse cytogenetics and may precede IGH translocations. Blood. 2015;125:831–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chretien M-L, Corre J, Lauwers-Cances V, Magrangeas F, Cleynen A, Yon E, et al. Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter? Blood. 2015;126:2713–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, Martincorena I, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10:3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsuyama N, Abe Y, Yanagi A, Yanai Y, Sugai M, Katafuchi A, et al. Induction of t(11;14) IgH enhancer/promoter-cyclin D1 gene translocation using CRISPR/Cas9. Oncol Lett. 2019;8:275–282

    Google Scholar 

  29. Xie Z, Chooi JY, Toh SHM, Yang D, Basri NB, Ho YS, Chng WJ MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells. Leukemia. 2019;33:739–748

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, et al. PTEN methylation by NSD2 controls cellular sensitivity to DNA damage. Cancer Discov. 2019;9:1306–1323

    Article  PubMed  PubMed Central  Google Scholar 

  31. Furukawa Y, Kikuchi J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol. 2016;104:281–292

    Article  CAS  PubMed  Google Scholar 

  32. Kikuchi J, Koyama D, Wada T, Izumi T, Hofgaard PO, Bogen B, Furukawa Y. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J Clin Invest. 2015;125:4375–4390

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murase T, Ri M, Narita T, Fujii K, Masaki A, Iida S, Inagaki H. Immunohistochemistry for identification of CCND1, NSD2, and MAF gene rearrangements in plasma cell myeloma. Cancer Sci. 2019;110:2600–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mikulasova A, Wardell CP, Murison A, Boyle EM, Jackson GH, Smetana J, Kufova Z, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017 ;102:1617–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Nieuwenhuijzen N, Spaan I, Raymakers R, Peperzak V, et al. From MGUS to multiple myeloma, a paradigm for clonal evolution of premalignant cells. Cancer Res. 2018;78:2449–2456

    Article  CAS  PubMed  Google Scholar 

  36. Kortüm KM, Mai EK, Hanafiah NH, Shi CX, Zhu YX, Bruins L, et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and ras pathway genes. Blood. 2016;128:1735–1744

    Article  CAS  Google Scholar 

  37. Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997

    Article  CAS  PubMed  Google Scholar 

  38. Bolli N, Maura F, Minvielle S, Gloznik D, Szalat R, Fullam A, et al. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018;9:3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maura F, Petljak M, Lionetti M, Cifola I, Liang W, Pinatel E, et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dysclasias and multiple myeloma cell lines. Leukemia. 2018;32:1044–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamazaki H, Shirakawa K, Matsumoto T, Hirabayashi S, Murakawa Y, Kobayashi M, et al. Endogenous APOBEC3B overexpression constitutively generates DNA substitution and deletions in myeloma cells Sci. Rep. 2019;9:7122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumoto T, Shirakawa K, Yokoyama M, Fukuda H, Sarca AD, Koyabu s, et al. Protein kinase A inhibits tumor mutator APOBEC3B through phosphorylation Sci. Rep. 2019;9 8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoang PH, Comish AJ, Dobbins SE, Kaiser M, Houlston RS. Mutational process contributing to the development of multiple myeloma. Blood Cancer. J. 2019 ;9:60

    Article  PubMed  PubMed Central  Google Scholar 

  43. Affer M, Chesi M, Chen WG, Keats JJ, Demchenko YN, Roschke AV, et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia. 2014;28:1725–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Binder M, Rajkumar SV, Ketterling RP, Greipp PT, Dispenzieri A, Lacy MQ, et al. Prognostic implications of abnormalities of chromosome 13 and the presence of multiple cytogenetic high-risk abnormalities in newly diagnosed multiple myeloma. Blood Cancer J. 2017;7:e600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vrábel D, Pour L, Sevcíková S. The impact of NF-kB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 2019;34: 56–66

    Article  CAS  PubMed  Google Scholar 

  46. Glitza IC, Lu G, Shah R, Bashir Q, Shah N, Champlin RE, et al. Chromosome 8q241/c-MYC abnormality: a marker for high-risk myeloma Leuk. Lymphoma 2015;56 :602–607

    Article  CAS  PubMed  Google Scholar 

  47. Shah V, Sherborne AL, Walker BA, Johnson DC, Boyle EM, Ellis S, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32:102–110

    Article  CAS  PubMed  Google Scholar 

  48. Resche L, Angtuaco EJ, Alpe TL, Gershner GH, McDonald JE, Samant RS, et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood. 2018;132:59–66

    Article  CAS  Google Scholar 

  49. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F, et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33:159–170

    Article  CAS  PubMed  Google Scholar 

  50. Jovanovic KK, Escure G, Demonchy J, Willaume A, Van de Wyngaert Z, Farhat M, et al. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol. 2019;8:665

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lodé L, Eveillard M, Trichet V, Soussi T, Wuillème S, Richebourg S, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95:1973–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thanendrarajan S, Tian E, Qu P, Mathur P, Schinke C, van Rhee F, et al. The level of deletion 17p and bi-allelic inactivation of TP53 has a significant impact on clinical outcome in multiple myeloma. Haematologica. 2017;102:e364–e367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol. 2016;18:897–909

    Article  CAS  PubMed  Google Scholar 

  54. Chin M, Sive JI, Allen C, Roddie C, Chavda SJ, Smith D, et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7:e610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thakurta A, Ortiz M, Blecua P, Towfic F, Corre J, Serbina NV, et al. High subclonal fraction of 17p deletion is associated with poor prognosis in multiple myeloma. Blood. 2019;133:1217–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lakshman A, Painuly U, Rajkumar SV, Ketterling RP, Kapoor P, et al. Impact of acquired del(17p) in multiple myeloma. Blood Adv. 2019;3:1930–1938

    Article  PubMed  PubMed Central  Google Scholar 

  57. Branford S, Kim DDH, Apperley JF, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia Leukemia. 2019;33:1835–1850

    Article  PubMed  PubMed Central  Google Scholar 

  58. Todoerti K, Agnelli L, Fabris S, Lionetti M, Tuana G, Mosca L, et al. Transcriptional characterization of a prospective series of primary plasma cell leukemia revealed signatures associated with tumor progression and poorer outcome. Clin Cancer Res. 2013;19:3247–3258

    Article  CAS  PubMed  Google Scholar 

  59. Cifola I, Lionetti M, Pinatel E, Todoerti K, Mangano E, Pietrelli A, et al. Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational process. Oncotarget. 2015;6:17543–17558

    Article  PubMed  PubMed Central  Google Scholar 

  60. Furukawa Y, Kikuchi J. Molecular pathogenesis of multiple myeloma. Int J Clin Oncol. 2015;20:413–422

    Article  CAS  PubMed  Google Scholar 

  61. Hébraud B, Caillot D, Corre J, et al. The translocation t(4;14) can be present only in minor subclones in multiple myeloma. Clin Cancer Res. 2013;19:4634–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pawlyn C, Morgan GJ. Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer. 2017;17:543–556

    Article  CAS  PubMed  Google Scholar 

  63. Dutta AK, Fink JL, Grady JP, Morgan GJ, Mullighan CG, To LB, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterized by clonal stability. Leukemia. 2019;33:457–468

    Article  CAS  PubMed  Google Scholar 

  64. Lacina L, Coma M, Dvoránková B, Kodet O, Melegová N, Gál P, Smetana K Jr. Evolution of cancer progression in the context of Darwinism. Anticancer Res. 2019;39:1–16

    Article  PubMed  Google Scholar 

  65. Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 2007;89:367–370

    Article  PubMed  Google Scholar 

  66. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification of neutral tumor evolution across cancer types. Nat Genet. 2016;48:238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eide CA, Druker BJ. Understanding cancer from the stem cells up. Nat Med. 2017;23:656–657

    Article  CAS  PubMed  Google Scholar 

  68. Mitani K, Nagata Y, Sasaki K, Yoshida K, Chiba K, Tanaka H, et al. Somatic mosaicism in chronic myeloid leukemia in remission. Blood. 2016 ;128:2863–2866

    Article  CAS  PubMed  Google Scholar 

  69. Johnson DC, Lenive O, Mitchell J, Jackson G, Owen R, Drayson M, et al. Neutral tumor evolution in myeloma is associated with poor prognosis. Blood. 2017;130:1639–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raab M, Lehners N, Xu J, Ho AD, Schirmacher P, Goldschmidt H, Andrulis M. Spatially divergent clonal evolution in multiple myeloma: overcoming resistance to BRAF inhibition. Blood. 2016;127:2155–2157

    Article  CAS  PubMed  Google Scholar 

  72. Gonsalves WI, Buadi FK, Ailawadhi S, Bergsagel PL, Chanan Khan AA, Dingli D, et al. Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma: a Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Bone Marrow Transpl. 2019;54:353–367

    Article  CAS  Google Scholar 

  73. Gandhi UH, Cornell RF, Lakshman A, Gahvari ZJ, McGehee E, Jagosky MH, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33:2266–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kapoor P, Rajkumar SV. Smoldering multiple myeloma: to treat or not to treat. Cancer J. 2019;25:65–71

    Article  PubMed  Google Scholar 

  75. Zhao AL, Shen KN, Wang JN, Huo LQ, Li J, Cao XX, et al. Early or deferred treatment of smoldering multiple myeloma: a meta-analysis on randomized controlled studies. Cancer Manag Res. 2019;11:5599–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, Gatt ME, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat Med. 2018;24:1867–1876

    Article  CAS  PubMed  Google Scholar 

  77. Chaidos A, Barnes CP, Cowan G, May PC, Melo V, Hatjiharissi S, et al. Clinical drug resistance linked to interconvertible phenotypes and functional states of tumor-propagating cells in multiple myeloma. Blood. 2013;121:318–328

    Article  CAS  PubMed  Google Scholar 

  78. Herviou L, Jourdan M, Martinez A-M, Cavalli G, Moreaux J. EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation. Leukemia. 2019;33:2047–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ri M. Endoplasmic-reticulum stress pathway-associated mechanisms of action of proteasome inhibitors in multiple myeloma. Int J Hematol. 2016;104: 273– 280

    Article  CAS  PubMed  Google Scholar 

  80. Nikesitch N, Lee JM, Ling S, Roberts TL. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin Transl Immunology 2018;7:e1007

    Article  PubMed  PubMed Central  Google Scholar 

  81. Leung-Hagesteijn C, Erdmann N, Cheung G, et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 2013;24:289–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bagratuni T, Sklirou AD, Kastritis E, Liacos CI, Spilioti C, Eleutherakis-Papaiakovou E, et al. Toll-like receptor 4 activation promotes multiple myeloma cell growth and survival via suppression of the endoplasmic reticulum stress factor chop. Sci Rep. 2019;9:3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kellner J, Wallace C, Liu B, Li Z. Definition of a multiple myeloma progenitor population in mice driven by forced expression of XBP1s JCI Insight 2019 ;4: e124698

    Article  PubMed Central  Google Scholar 

  84. M Jourdan M Cren P Schafer 2016 Differential effects of lenalidomide during plasma cell differentiation. Oncotarget. 7:28096–28111

    Article  PubMed  PubMed Central  Google Scholar 

  85. McCarthy PL, Holstein SA, Petrucci MT, Richardson PG, Hulin C, Tosi P, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35:3279–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gay F, Jackson G, Rosiñol L, Holstein SA, Moreau P, Spada S, et al. Maintenance treatment and survival in patients with myeloma A systematic review and network meta-analysis. JAMA Oncol. 2018;4:1389–1397

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chakraborty R, Muchtar E, Kumar SK, Buadi FK, Dingli D, Dispenzieri A, et al. Outcomes of maintenance therapy with lenalidomide or bortezomib in multiple myeloma in the setting of early autologous stem cell transplantation. Leukemia. 2018;32:712–718

    Article  CAS  PubMed  Google Scholar 

  88. Jackson GH, Davies FE, Pawlyn C, Cairns DA, Striha A, Collett C, et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20:57–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fuchida S, Sunami K, Matsumoto M, Okumura H, Murayama T, Miyamoto T, et al. A phase II study of lenalidomide consolidation and maintenance therapy after autologous PBSCT in patients with multiple myeloma. Int J Hematol. 2019;109:107–114

    Article  CAS  PubMed  Google Scholar 

  90. Barosi G, Gale RP. Is lenalidomide the standard-of-care after an autotransplant for plasma cell myeloma? Leukemia. 2019;33:588–596

    Article  CAS  PubMed  Google Scholar 

  91. Kikuchi J, Kuroda Y, Koyama D, Osada N, Izumi T, et al. Myeloma cells are activated in bone marrow microenvironment by the CD180/MD-1 complex which senses lipopolysaccharide. Cancer Res. 2018;78:1766–1778

    Article  CAS  PubMed  Google Scholar 

  92. Zhu YX, Braggio E, Shi CX, Kortuem KM, Bruins LA, Schmidt JE, et al. Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood. 2014;124:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pourabdollah M, Bahmanyar M, Atenafu EG, Reece D, Hou J, Chang H. High IKZF1/3 protein expression is a favorable prognostic factor for survival of relapsed/refractory multiple myeloma patients treated with lenalidomide. J Hematol Oncol. 2016;9:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Touzeau C, Moreau P, Dumontet C. Monoclonal antibody therapy in multiple myeloma. Leukemia. 2017;31:1039–1047

    Article  CAS  PubMed  Google Scholar 

  95. Chim CS, Kumar SK, Orlowski RZ, Cook G, Richardson PG, Gertz MA, et al. Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia. 2018;32:252–262

    Article  CAS  PubMed  Google Scholar 

  96. Tamura H. Immunopathogenesis and immunotherapy of multiple myeloma. Int J Hematol. 2018;107:278–285

    Article  CAS  PubMed  Google Scholar 

  97. Taniwaki M, Yoshida M, Matsumoto Y, Shimura K, Kuroda J, Kaneko H. Elotuzumab for the treatment of relapsed or refractory multiple myeloma, with special reference to its modes of action and SLAMF7 signaling. Mediterr J Hematol Infect Dis. 2018;10:e2018014

    Article  PubMed  PubMed Central  Google Scholar 

  98. Franssen LE, Mutis T, Lokhorst HM, van de Donk NWCJ. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol. 2019;10:1

    Article  CAS  Google Scholar 

  99. Pick M, Vainstein V, Goldschmidt N, Lavie D, Libster D, Gural A, et al. Daratumumab resistance is frequent in advanced-stage multiple myeloma patients irrespective of CD38 expression and is related to dismal prognosis. Eur J Haematol. 2018;100:494–501

    Article  CAS  PubMed  Google Scholar 

  100. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood. 2010;116:2286–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A, et al. Marrow stromal cells induce B7–H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. 2013;27:464–472

    Article  CAS  PubMed  Google Scholar 

  102. Paiva B, Azpilikueta A Puig N, Ocio EM, Sharma R, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015;29:2110–2113

    Article  CAS  PubMed  Google Scholar 

  103. Fujiwara Y, Sun Y, Torphy RJ, He J, Yanaga K, et al. Pomalidomide inhibits PD-L1 induction to promote antitumor immunity. Cancer Res. 2018;78:6655–6665

    Article  CAS  PubMed  Google Scholar 

  104. Lesokhin AM, Bal S, Badros AZ. Lessons learned from checkpoint blockade targeting PD-1 in multiple myeloma. Cancer Immunol Res. 2019;7:1224–1229

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kikuchi J, Hori M, Sorimachi N, Hagiwara S, Kuroda Y, Koyama D, et al. Soluble SLAMF7 promotes the growth of myeloma cells via hemophilic interaction with surface SLAMF7. Leukemia. 2020;34:180–195.

  106. Xie Z, Gunaratne J, Cheong LL, Liu SC, Koh TL, Huang G, et al. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma. Oncotarget. 2013;4:1008–1018

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

YF received the Award in Aki’s Memory from the International Myeloma Foundation Japan. JK received the Kano Foundation Research Grant and a grant from the International Myeloma Foundation Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Furukawa.

Ethics declarations

Conflicts of interest

YF received research funding and honoraria from AbbVie Inc., Bristol–Myers Squibb Co., Celgene Co., Janssen Pharmaceutical K.K. and Takeda Pharmaceutical Co. JK declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 62 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, Y., Kikuchi, J. Molecular basis of clonal evolution in multiple myeloma. Int J Hematol 111, 496–511 (2020). https://doi.org/10.1007/s12185-020-02829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02829-6

Keywords

Navigation