Skip to main content

Advertisement

Log in

Reverse Total Shoulder Arthroplasty: Biomechanics and Indications

  • Reverse Shoulder Arthroplasty (E Craig and C Chambers, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Over the past decade, our understanding of the biomechanics of the reverse total shoulder arthroplasty (RTSA) has advanced, resulting in design adjustments, improved outcomes, and expanding indications. The purpose of this review is to summarize recent literature regarding the biomechanics of RTSA and the evolving indications for its use.

Recent Findings

While Grammont’s principles of RTSA biomechanics remain pillars of contemporary designs, a number of modifications have been proposed and trialed in later generations to address complications such as impingement and glenoid failure. Clinical and biomechanical literature suggest that less medialized, more inferior glenospheres result in less impingement and notching. On the humerus, a more vertical neck cut is associated with less impingement. Indications for RTSA continue to expand beyond the classic indication of cuff tear arthropathy (CTA). Patients without a functional cuff but no arthritis now have a reliable option in the RTSA. RTSA has also replaced hemiarthroplasty as the implant of choice for displaced three- and four-part proximal humerus fractures in the elderly. Finally, updated design options and modular components now allow for treatment of glenoid bone loss, failed arthroplasty, and proximal humerus tumors with RTSA implants.

Summary

Reverse total shoulder arthroplasty design has been modernized on both the glenoid and humerus to address biomechanical challenges of early implants. As outcomes improve with these modifications, RTSA indications are growing to address complex bony pathologies such as tumor and bone loss. Longitudinal follow-up of patients with updated designs and novel indications is essential to judicious application of RTSA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am. 2011;93(24):2249–54. https://doi.org/10.2106/JBJS.J.01994.

    Article  PubMed  Google Scholar 

  2. Palsis JA, Simpson KN, Matthews JH, Traven S, Eichinger JK, Friedman RJ. Current trends in the use of shoulder arthroplasty in the United States. Orthopedics. 2018;41(3):e416–e23. https://doi.org/10.3928/01477447-20180409-05.

    Article  PubMed  Google Scholar 

  3. Boileau P, Watkinson D, Hatzidakis AM, Hovorka I. Neer Award 2005: The Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elbow Surg. 2006;15(5):527–40. https://doi.org/10.1016/j.jse.2006.01.003.

    Article  PubMed  Google Scholar 

  4. Grammont PTP, Laffay JP, Deries X. Concept study and reaslization of a new total shoulder prosthesis [French]. Rhumatologie. 1987;39:407–18.

    Google Scholar 

  5. Flatow EL, Harrison AK. A history of reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2011;469(9):2432–9. https://doi.org/10.1007/s11999-010-1733-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berliner JL, Regalado-Magdos A, Ma CB, Feeley BT. Biomechanics of reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24(1):150–60. https://doi.org/10.1016/j.jse.2014.08.003.

    Article  PubMed  Google Scholar 

  7. Bigorre N, Lancigu R, Bizot P, Hubert L. Predictive factors of scapular notching in patients with reverse shoulder arthroplasty. Orthop Traumatol Surg Res. 2014;100(7):711–4. https://doi.org/10.1016/j.otsr.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, et al. Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elbow Surg. 2008;17(4):608–15. https://doi.org/10.1016/j.jse.2007.11.010.

    Article  Google Scholar 

  9. Kontaxis A, Johnson GR. The biomechanics of reverse anatomy shoulder replacement‚ Äì A modelling study. Clin Biomech (Bristol, Avon). 2009;24(3):254-60. https://doi.org/10.1016/j.clinbiomech.2008.12.004.

    Article  CAS  Google Scholar 

  10. Levigne C, Boileau P, Favard L, Garaud P, Mole D, Sirveaux F, et al. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2008;17(6):925–35. https://doi.org/10.1016/j.jse.2008.02.010.

    Article  PubMed  Google Scholar 

  11. Berhouet J, Garaud P, Favard L. Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2014;23(2):151–8. https://doi.org/10.1016/j.jse.2013.05.009.

    Article  PubMed  Google Scholar 

  12. Boileau P, Gauci MO, Wagner ER, Clowez G, Chaoui J, Chelli M, et al. The reverse shoulder arthroplasty angle: a new measurement of glenoid inclination for reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2019. https://doi.org/10.1016/j.jse.2018.11.074.

    Article  Google Scholar 

  13. Choi CH, Kim SG, Lee JJ, Kwack BH. Comparison of clinical and radiological results according to glenosphere position in reverse total shoulder arthroplasty: a short-term follow-up study. Clin Orthop Surg. 2017;9(1):83–90. https://doi.org/10.4055/cios.2017.9.1.83.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Biase CF, Delcogliano M, Borroni M, Castagna A. Reverse total shoulder arthroplasty: radiological and clinical result using an eccentric glenosphere. Musculoskelet Surg. 2012;96(Suppl 1):S27–34. https://doi.org/10.1007/s12306-012-0193-4.

    Article  PubMed  Google Scholar 

  15. Edwards TB, Trappey GJ, Riley C, O'Connor DP, Elkousy HA, Gartsman GM. Inferior tilt of the glenoid component does not decrease scapular notching in reverse shoulder arthroplasty: results of a prospective randomized study. J Shoulder Elbow Surg. 2012;21(5):641–6. https://doi.org/10.1016/j.jse.2011.08.057.

    Article  PubMed  Google Scholar 

  16. Meisterhans M, Bouaicha S, Meyer DC. Posterior and inferior glenosphere position in reverse total shoulder arthroplasty supports deltoid efficiency for shoulder flexion and elevation. J Shoulder Elbow Surg. 2019. https://doi.org/10.1016/j.jse.2018.12.018.

    Article  Google Scholar 

  17. Leung AS, Hippe DS, Ha AS. Cuff tear arthropathy shoulder hemiarthroplasty: a radiographic outcome study. Skeletal Radiology. 2017;46(7):909–18. https://doi.org/10.1007/s00256-017-2631-8.

    Article  PubMed  Google Scholar 

  18. Mahony GT, Werner BC, Chang B, Grawe BM, Taylor SA, Craig EV, et al. Risk factors for failing to achieve improvement after anatomic total shoulder arthroplasty for glenohumeral osteoarthritis. J Shoulder Elbow Surg. 2018;27(6):968–75. https://doi.org/10.1016/j.jse.2017.12.018.

    Article  PubMed  Google Scholar 

  19. Neer CS 2nd, Watson KC, Stanton FJ. Recent experiences in total shoulder replacement. J Bone Joint Surg. 1982;64:319–37.

    Article  Google Scholar 

  20. Poppen NKWP. Forces at the glenohumeral joint in abduction. Clin Orthop Relat Res. 1978;135:165–70.

    Google Scholar 

  21. Terrier ARA, Merlini F, Farron A. Simulated joint and muscle forces in reversed and anatomic shoulder prostheses. J Bone Joint Surg. 2008;6(90):751–6.

    Article  Google Scholar 

  22. Ackland DC, Roshan-Zamir S, Richardson M, Pandy MG. Muscle and joint-contact loading at the glenohumeral joint after reverse total shoulder arthroplasty. J Orthop Res. 2011;29(12):1850–8. https://doi.org/10.1002/jor.21437.

    Article  PubMed  Google Scholar 

  23. Ackland DC, Roshan-Zamir S, Richardson M, Pandy MG. Moment arms of the shoulder musculature after reverse total shoulder arthroplasty. J Bone Joint Surg Am. 2010;92(5):1221–30. https://doi.org/10.2106/JBJS.I.00001.

    Article  PubMed  Google Scholar 

  24. Henninger HB, Barg A, Anderson AE, Bachus KN, Tashjian RZ, Burks RT. Effect of deltoid tension and humeral version in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg. 2012;21(4):483–90. https://doi.org/10.1016/j.jse.2011.01.040.

    Article  PubMed  Google Scholar 

  25. Jobin CM, Brown GD, Bahu MJ, Gardner TR, Bigliani LU, Levine WN, et al. Reverse total shoulder arthroplasty for cuff tear arthropathy: the clinical effect of deltoid lengthening and center of rotation medialization. J Shoulder Elbow Surg. 2012;21(10):1269–77. https://doi.org/10.1016/j.jse.2011.08.049.

    Article  PubMed  Google Scholar 

  26. Ladermann AWM, Melis B, Hoffmeyer P, Walch G. Objective evaluation of lengthening in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2009;(18):588–95. https://doi.org/10.1016/j.jse.2009.03.012.

    Article  Google Scholar 

  27. Ackland DC, Richardson M, Pandy MG. Axial rotation moment arms of the shoulder musculature after reverse total shoulder arthroplasty. J Bone Joint Surg Am. 2012;94(20):1886–95. https://doi.org/10.2106/JBJS.J.01861.

    Article  PubMed  Google Scholar 

  28. Dedy NJ, Gouk CJ, Taylor FJ, Thomas M, Tan SLE. Sonographic assessment of the subscapularis after reverse shoulder arthroplasty: impact of tendon integrity on shoulder function. J Shoulder Elbow Surg. 2018;27(6):1051–6. https://doi.org/10.1016/j.jse.2017.12.008.

    Article  PubMed  Google Scholar 

  29. Favre P, Sussmann PS, Gerber C. The effect of component positioning on intrinsic stability of the reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2010;19(4):550–6. https://doi.org/10.1016/j.jse.2009.11.044.

    Article  PubMed  Google Scholar 

  30. Clouthier AL, Hetzler MA, Fedorak G, Bryant JT, Deluzio KJ, Bicknell RT. Factors affecting the stability of reverse shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg. 2013;22(4):439–44. https://doi.org/10.1016/j.jse.2012.05.032.

    Article  PubMed  Google Scholar 

  31. North LR, Hetzler MA, Pickell M, Bryant JT, Deluzio KJ, Bicknell RT. Effect of implant geometry on range of motion in reverse shoulder arthroplasty assessed using glenohumeral separation distance. J Shoulder Elbow Surg. 2015;24(9):1359–66. https://doi.org/10.1016/j.jse.2014.12.031.

    Article  PubMed  Google Scholar 

  32. Langohr GD, Willing R, Medley JB, Athwal GS, Johnson JA. Contact mechanics of reverse total shoulder arthroplasty during abduction: the effect of neck-shaft angle, humeral cup depth, and glenosphere diameter. J Shoulder Elbow Surg. 2016;25(4):589–97. https://doi.org/10.1016/j.jse.2015.09.024.

    Article  PubMed  Google Scholar 

  33. Elwell J, Choi J, Willing R. Quantifying the competing relationship between adduction range of motion and baseplate micromotion with lateralization of reverse total shoulder arthroplasty. J Biomech. 2017;52:24–30. https://doi.org/10.1016/j.jbiomech.2016.11.053.

    Article  PubMed  Google Scholar 

  34. Roche CPSN, Martin BL, Steiler CA, Flurin PH, Wright TW, et al. The impact of scapular notching on reverse shoulder glenoid fixation. J Shoulder Elbow Surg. 2013;22:963–70.

    Article  Google Scholar 

  35. Permeswaran VN, Caceres A, Goetz JE, Anderson DD, Hettrich CM. The effect of glenoid component version and humeral polyethylene liner rotation on subluxation and impingement in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26(10):1718–25. https://doi.org/10.1016/j.jse.2017.03.027.

    Article  PubMed  Google Scholar 

  36. Hettrich CM, Permeswaran VN, Goetz JE, Anderson DD. Mechanical tradeoffs associated with glenosphere lateralization in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24(11):1774–81. https://doi.org/10.1016/j.jse.2015.06.011.

    Article  PubMed  Google Scholar 

  37. Melis B, DeFranco M, Ladermann A, Mole D, Favard L, Nerot C, et al. An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years. J Bone Joint Surg Br. 2011;93(9):1240–6. https://doi.org/10.1302/0301-620x.93b9.25926.

    Article  CAS  PubMed  Google Scholar 

  38. Helmkamp JK, Bullock GS, Amilo NR, Guerrero EM, Ledbetter LS, Sell TC, et al. The clinical and radiographic impact of center of rotation lateralization in reverse shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg. 2018;27(11):2099–107. https://doi.org/10.1016/j.jse.2018.07.007.

    Article  PubMed  Google Scholar 

  39. Rhee SM, Lee JD, Park YB, Yoo JC, Oh JH. Prognostic radiological factors affecting clinical outcomes of reverse shoulder arthroplasty in the Korean population. Clin Orthop Surg. 2019;11(1):112–9. https://doi.org/10.4055/cios.2019.11.1.112.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Werner BS, Chaoui J, Walch G. Glenosphere design affects range of movement and risk of friction-type scapular impingement in reverse shoulder arthroplasty. Bone Joint J. 2018;100-b(9):1182–6. https://doi.org/10.1302/0301-620x.100b9.Bjj-2018-0264.R1.

    Article  CAS  PubMed  Google Scholar 

  41. • Boutsiadis A, Lenoir H, Denard PJ, Panisset JC, Brossard P, Delsol P, et al. The lateralization and distalization shoulder angles are important determinants of clinical outcomes in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2018;27(7):1226–34. https://doi.org/10.1016/j.jse.2018.02.036In this retrospective evaluation of 46 patients treated with RTSA for CTA, 2-year functional outcomes were correlated with intraoperative implant placement. The authors describe two radiographic measurements, the “lateralization shoulder angle” (LSA) and the “distalization shoulder angle” (DSA). More lateralized components (with higher LSA) had improved range of motion and patient-reported outcomes. DSA values between 40 and 65° were correlated with improved range of motion. These findings support prior literature which has demonstrated improved range of motion and PROs in the setting of some amount of lateralization and deltoid lengthening.

    Article  PubMed  Google Scholar 

  42. Kim SJ, Jang SW, Jung KH, Kim YS, Lee SJ, Yoo YS. Analysis of impingement-free range of motion of the glenohumeral joint after reverse total shoulder arthroplasty using three different implant models. J Orthop Sci. 2019;24(1):87–94. https://doi.org/10.1016/j.jos.2018.08.016.

    Article  PubMed  Google Scholar 

  43. de Wilde LF, Poncet D, Middernacht B, Ekelund A. Prosthetic overhang is the most effective way to prevent scapular conflict in a reverse total shoulder prosthesis. Acta Orthop. 2010;81(6):719–26. https://doi.org/10.3109/17453674.2010.538354.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang M, Junaid S, Gregory T, Hansen U, Cheng CK. Effect of baseplate positioning on fixation of reverse total shoulder arthroplasty. Clin Biomech (Bristol, Avon). 2019;62:15–22. https://doi.org/10.1016/j.clinbiomech.2018.12.021.

    Article  Google Scholar 

  45. Chae SW, Lee J, Han SH, Kim SY. Inferior tilt fixation of the glenoid component in reverse total shoulder arthroplasty: a biomechanical study. Orthop Traumatol Surg Res. 2015;101(4):421–5. https://doi.org/10.1016/j.otsr.2015.03.009.

    Article  CAS  PubMed  Google Scholar 

  46. Poon PC, Chou J, Young SW, Astley T. A comparison of concentric and eccentric glenospheres in reverse shoulder arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2014;96(16):e138. https://doi.org/10.2106/jbjs.M.00941.

    Article  PubMed  Google Scholar 

  47. Li X, Dines JS, Warren RF, Craig EV, Dines DM. Inferior glenosphere placement reduces scapular notching in reverse total shoulder arthroplasty. Orthopedics. 2015;38(2):e88–93. https://doi.org/10.3928/01477447-20150204-54.

    Article  PubMed  Google Scholar 

  48. Jeon BK, Panchal KA, Ji JH, Xin YZ, Park SR, Kim JH, et al. Combined effect of change in humeral neck-shaft angle and retroversion on shoulder range of motion in reverse total shoulder arthroplasty - a simulation study. Clin Biomech (Bristol, Avon). 2016;31:12–9. https://doi.org/10.1016/j.clinbiomech.2015.06.022.

    Article  Google Scholar 

  49. Nelson R, Lowe JT, Lawler SM, Fitzgerald M, Mantell MT, Jawa A. Lateralized center of rotation and lower neck-shaft angle are associated with lower rates of scapular notching and heterotopic ossification and improved pain for reverse shoulder arthroplasty at 1 year. Orthopedics. 2018;41(4):230–6. https://doi.org/10.3928/01477447-20180613-01.

    Article  PubMed  Google Scholar 

  50. Kempton LB, Balasubramaniam M, Ankerson E, Wiater JM. A radiographic analysis of the effects of prosthesis design on scapular notching following reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2011;20(4):571–6. https://doi.org/10.1016/j.jse.2010.08.024.

    Article  PubMed  Google Scholar 

  51. Ladermann A, Denard PJ, Boileau P, Farron A, Deransart P, Terrier A, et al. Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. Int Orthop. 2015;39(11):2205–13. https://doi.org/10.1007/s00264-015-2984-3.

    Article  PubMed  Google Scholar 

  52. Berhouet J, Kontaxis A, Gulotta LV, Craig E, Warren R, Dines J, et al. Effects of the humeral tray component positioning for onlay reverse shoulder arthroplasty design: a biomechanical analysis. J Shoulder Elbow Surg. 2015;24(4):569–77. https://doi.org/10.1016/j.jse.2014.09.022.

    Article  PubMed  Google Scholar 

  53. Merolla G, Walch G, Ascione F, Paladini P, Fabbri E, Padolino A, et al. Grammont humeral design versus onlay curved-stem reverse shoulder arthroplasty: comparison of clinical and radiographic outcomes with minimum 2-year follow-up. J Shoulder Elbow Surg. 2018;27(4):701–10. https://doi.org/10.1016/j.jse.2017.10.016.

    Article  PubMed  Google Scholar 

  54. Levigne C, Garret J, Boileau P, Alami G, Favard L, Walch G. Scapular notching in reverse shoulder arthroplasty: is it important to avoid it and how? Clin Orthop Relat Res. 2011;469(9):2512–20. https://doi.org/10.1007/s11999-010-1695-8.

    Article  PubMed  Google Scholar 

  55. Nyffeler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J Shoulder Elbow Surg. 2005;14(5):524–8. https://doi.org/10.1016/j.jse.2004.09.010.

    Article  PubMed  Google Scholar 

  56. Simovitch RWZM, Lohri E, Helmy N, Gerber C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg. 2007;89-A:588–600.

    Article  Google Scholar 

  57. Mollon B, Mahure SA, Roche CP, Zuckerman JD. Impact of scapular notching on clinical outcomes after reverse total shoulder arthroplasty: an analysis of 476 shoulders. J Shoulder Elbow Surg. 2017;26(7):1253–61. https://doi.org/10.1016/j.jse.2016.11.043.

    Article  PubMed  Google Scholar 

  58. Sirveaux FFL, Oudet D, Huquet D, Walch G, Mole D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg. 2004;86:388–95.

    Article  CAS  Google Scholar 

  59. Bitzer A, Rojas J, Patten IS, Joseph J, McFarland EG. Incidence and risk factors for aseptic baseplate loosening of reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2018;27(12):2145–52. https://doi.org/10.1016/j.jse.2018.05.034.

    Article  PubMed  Google Scholar 

  60. Katz D, Valenti P, Kany J, Elkholti K, Werthel JD. Does lateralisation of the centre of rotation in reverse shoulder arthroplasty avoid scapular notching? Clinical and radiological review of one hundred and forty cases with forty five months of follow-up. Int Orthop. 2016;40(1):99–108. https://doi.org/10.1007/s00264-015-2976-3.

    Article  PubMed  Google Scholar 

  61. Wellmann M, Struck M, Pastor MF, Gettmann A, Windhagen H, Smith T. Short and midterm results of reverse shoulder arthroplasty according to the preoperative etiology. Arch Orthop Trauma Surg. 2013;133(4):463–71. https://doi.org/10.1007/s00402-013-1688-7.

    Article  PubMed  Google Scholar 

  62. van Ochten JHM, van der Pluijm M, Pouw M, Felsch QTM, Heesterbeek P, de Vos MJ. Long-term survivorship and clinical and radiological follow - up of the primary uncemented Delta III reverse shoulder prosthesis. J Orthop. 2019;16(4):342–6. https://doi.org/10.1016/j.jor.2019.03.007.

    Article  PubMed  Google Scholar 

  63. Al-Hadithy N, Domos P, Sewell MD, Pandit R. Reverse shoulder arthroplasty in 41 patients with cuff tear arthropathy with a mean follow-up period of 5 years. J Shoulder Elbow Surg. 2014;23(11):1662–8. https://doi.org/10.1016/j.jse.2014.03.001.

    Article  PubMed  Google Scholar 

  64. Guery J, Favard L, Sirveaux F, Oudet D, Mole D, Walch G. Reverse total shoulder arthroplasty. Survivorship analysis of eighty replacements followed for five to ten years. J Bone Joint Surg Am. 2006;88(8):1742–7. https://doi.org/10.2106/jbjs.e.00851.

    Article  PubMed  Google Scholar 

  65. Petrillo S, Longo UG, Papalia R, Denaro V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: a systematic review. Musculoskelet Surg. 2017;101(2):105–12. https://doi.org/10.1007/s12306-017-0474-z.

    Article  CAS  PubMed  Google Scholar 

  66. Wiater BP, Koueiter DM, Maerz T, Moravek JE Jr, Yonan S, Marcantonio DR, et al. Preoperative deltoid size and fatty infiltration of the deltoid and rotator cuff correlate to outcomes after reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2015;473(2):663–73. https://doi.org/10.1007/s11999-014-4047-2.

    Article  PubMed  Google Scholar 

  67. Wong SE, Pitcher AA, Ding DY, Cashman N, Zhang AL, Ma CB, et al. The effect of patient gender on outcomes after reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2017;26(11):1889–96. https://doi.org/10.1016/j.jse.2017.07.013.

    Article  PubMed  Google Scholar 

  68. Cuff D, Clark R, Pupello D, Frankle M. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency: a concise follow-up, at a minimum of five years, of a previous report. J Bone Joint Surg Am. 2012;94(21):1996–2000. https://doi.org/10.2106/jbjs.K.01206.

    Article  PubMed  Google Scholar 

  69. Cuff DJ, Pupello DR, Santoni BG, Clark RE, Frankle MA. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency: a concise follow-up, at a minimum of 10 years, of previous reports. J Bone Joint Surg Am. 2017;99(22):1895–9. https://doi.org/10.2106/jbjs.17.00175

    Article  PubMed  Google Scholar 

  70. Mulieri P, Dunning P, Klein S, Pupello D, Frankle M. Reverse shoulder arthroplasty for the treatment of irreparable rotator cuff tear without glenohumeral arthritis. J Bone Joint Surg Am. 2010;92(15):2544–56. https://doi.org/10.2106/jbjs.i.00912.

    Article  PubMed  Google Scholar 

  71. Gerber C, Canonica S, Catanzaro S, Ernstbrunner L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J Shoulder Elbow Surg. 2018;27(5):831–8. https://doi.org/10.1016/j.jse.2017.10.037.

    Article  PubMed  Google Scholar 

  72. Ernstbrunner L, Andronic O, Grubhofer F, Camenzind RS, Wieser K, Gerber C. Long-term results of reverse total shoulder arthroplasty for rotator cuff dysfunction: a systematic review of longitudinal outcomes. J Shoulder Elbow Surg. 2019;28(4):774–81. https://doi.org/10.1016/j.jse.2018.10.005.

    Article  PubMed  Google Scholar 

  73. Hartzler RU, Steen BM, Hussey MM, Cusick MC, Cottrell BJ, Clark RE, et al. Reverse shoulder arthroplasty for massive rotator cuff tear: risk factors for poor functional improvement. J Shoulder Elbow Surg. 2015;24(11):1698–706. https://doi.org/10.1016/j.jse.2015.04.015.

    Article  PubMed  Google Scholar 

  74. Shields EJW, Koueiter DM, Maerz T, Schwark A, Wiater JM. Previous rotator cuff repair is associated with inferior clinical outcomes after reverse total shoulder arthroplasty. Orthop J Sports Med. 2017;5(10):2325967117730311. https://doi.org/10.1177/2325967117730311.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rajaee SS, Yalamanchili D, Noori N, Debbi E, Mirocha J, Lin CA, et al. Increasing use of reverse total shoulder arthroplasty for proximal humerus fractures in elderly patients. Orthopedics. 2017;40(6):e982–e9. https://doi.org/10.3928/01477447-20170925-01.

    Article  PubMed  Google Scholar 

  76. Dillon MT, Prentice HA, Burfeind WE, Chan PH, Navarro RA. The increasing role of reverse total shoulder arthroplasty in the treatment of proximal humerus fractures. Injury. 2019;50(3):676–80. https://doi.org/10.1016/j.injury.2019.01.034.

    Article  PubMed  Google Scholar 

  77. Wright JO, Ho A, Kalma J, Koueiter D, Esterle J, Marcantonio D, et al. Uncemented reverse total shoulder arthroplasty as initial treatment for comminuted proximal humerus fractures. J Orthop Trauma. 2019. https://doi.org/10.1097/BOT.0000000000001465.

    Article  Google Scholar 

  78. Grubhofer F, Wieser K, Meyer DC, Catanzaro S, Beeler S, Riede U, et al. Reverse total shoulder arthroplasty for acute head-splitting, 3- and 4-part fractures of the proximal humerus in the elderly. J Shoulder Elbow Surg. 2016;25(10):1690–8. https://doi.org/10.1016/j.jse.2016.02.024.

    Article  PubMed  Google Scholar 

  79. Ross M, Hope B, Stokes A, Peters SE, McLeod I, Duke PF. Reverse shoulder arthroplasty for the treatment of three-part and four-part proximal humeral fractures in the elderly. J Shoulder Elbow Surg. 2015;24(2):215–22. https://doi.org/10.1016/j.jse.2014.05.022.

    Article  PubMed  Google Scholar 

  80. Chalmers PN, Slikker W 3rd, Mall NA, Gupta AK, Rahman Z, Enriquez D, et al. Reverse total shoulder arthroplasty for acute proximal humeral fracture: comparison to open reduction-internal fixation and hemiarthroplasty. J Shoulder Elbow Surg. 2014;23(2):197–204. https://doi.org/10.1016/j.jse.2013.07.044.

    Article  PubMed  Google Scholar 

  81. Sebastia-Forcada E, Cebrian-Gomez R, Lizaur-Utrilla A, Gil-Guillen V. Reverse shoulder arthroplasty versus hemiarthroplasty for acute proximal humeral fractures. A blinded, randomized, controlled, prospective study. J Shoulder Elbow Surg. 2014;23(10):1419–26. https://doi.org/10.1016/j.jse.2014.06.035.

    Article  PubMed  Google Scholar 

  82. Shukla DR, McAnany S, Kim J, Overley S, Parsons BO. Hemiarthroplasty versus reverse shoulder arthroplasty for treatment of proximal humeral fractures: a meta-analysis. J Shoulder Elbow Surg. 2016;25(2):330–40. https://doi.org/10.1016/j.jse.2015.08.030.

    Article  PubMed  Google Scholar 

  83. van der Merwe M, Boyle MJ, Frampton CMA, Ball CM. Reverse shoulder arthroplasty compared with hemiarthroplasty in the treatment of acute proximal humeral fractures. J Shoulder Elbow Surg. 2017;26(9):1539–45. https://doi.org/10.1016/j.jse.2017.02.005.

    Article  PubMed  Google Scholar 

  84. Roberson TA, Granade CM, Hunt Q, Griscom JT, Adams KJ, Momaya AM, et al. Non-operative management versus reverse shoulder arthroplasty for treatment of 3- and 4-part proximal humeral fractures in older adults. J Shoulder Elbow Surg. 2017;26(6):1017–22. https://doi.org/10.1016/j.jse.2016.10.013.

    Article  PubMed  Google Scholar 

  85. Chivot M, Lami D, Bizzozero P, Galland A, Argenson JN. Three- and four-part displaced proximal humeral fractures in patients older than 70 years: reverse shoulder arthroplasty or nonsurgical treatment? J Shoulder Elbow Surg. 2019;28(2):252–9. https://doi.org/10.1016/j.jse.2018.07.019.

    Article  PubMed  Google Scholar 

  86. Torchia MT, Austin DC, Cozzolino N, Jacobowitz L, Bell J-E. Acute versus delayed reverse total shoulder arthroplasty for the treatment of proximal humeral fractures in the elderly population: a systematic review and meta-analysis. J Shoulder Elbow Surg. 2019;28(4):765–73. https://doi.org/10.1016/j.jse.2018.10.004.

    Article  PubMed  Google Scholar 

  87. Hyun YS, Huri G, Garbis NG, McFarland EG. Uncommon indications for reverse total shoulder arthroplasty. Clin Orthop Surg. 2013;5(4):243–55. https://doi.org/10.4055/cios.2013.5.4.243.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Walch G, Moraga C, Young A, Castellanos-Rosas J. Results of anatomic nonconstrained prosthesis in primary osteoarthritis with biconcave glenoid. J Shoulder Elbow Surg. 2012;21(11):1526–33. https://doi.org/10.1016/j.jse.2011.11.030.

    Article  PubMed  Google Scholar 

  89. Boileau P, Moineau G, Roussanne Y, O'Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res. 2011;469(9):2558–67. https://doi.org/10.1007/s11999-011-1775-4.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sears BW, Johnston PS, Ramsey ML, Williams GR. Glenoid bone loss in primary total shoulder arthroplasty: evaluation and management. J Am Acad Orthop Surg. 2012;20(9):604–13. https://doi.org/10.5435/jaaos-20-09-604.

    Article  PubMed  Google Scholar 

  91. Cofield RH. Bone grafting for glenoid bone deficiencies in shoulder arthritis: a review. J Shoulder Elbow Surg. 2007;16(5 Suppl):S273–81. https://doi.org/10.1016/j.jse.2007.03.005.

    Article  PubMed  Google Scholar 

  92. Mizuno N, Denard PJ, Raiss P, Walch G. Reverse total shoulder arthroplasty for primary glenohumeral osteoarthritis in patients with a biconcave glenoid. J Bone Joint Surg Am. 2013;95(14):1297–304. https://doi.org/10.2106/jbjs.L.00820.

    Article  PubMed  Google Scholar 

  93. • Gupta A, Thussbas C, Koch M, Seebauer L. Management of glenoid bone defects with reverse shoulder arthroplasty-surgical technique and clinical outcomes. J Shoulder Elbow Surg. 2018;27(5):853–62. https://doi.org/10.1016/j.jse.2017.10.004This was a retrospective study of 94 patients with significant glenoid bone loss who underwent RTSA from 2001 to 2010. The majority of glenoid defects were eccentric. Most patients were managed with a single procedure; composite glenoid grafts were utilized in 12 patients, with a long central peg indicated for 9 patients. The size of the defect did not correlate with final outcomes. The authors conclude that most patients with glenoid defects can be managed with one-stage bone grafting at the time of RTSA, with staging indicated in cases of poor glenoid baseplate stability.

    Article  PubMed  Google Scholar 

  94. Flury MP, Frey P, Goldhahn J, Schwyzer HK, Simmen BR. Reverse shoulder arthroplasty as a salvage procedure for failed conventional shoulder replacement due to cuff failure–midterm results. Int Orthop. 2011;35(1):53–60. https://doi.org/10.1007/s00264-010-0990-z.

    Article  PubMed  Google Scholar 

  95. Walker M, Willis MP, Brooks JP, Pupello D, Mulieri PJ, Frankle MA. The use of the reverse shoulder arthroplasty for treatment of failed total shoulder arthroplasty. J Shoulder Elbow Surg. 2012;21(4):514–22. https://doi.org/10.1016/j.jse.2011.03.006.

    Article  PubMed  Google Scholar 

  96. Levy J, Frankle M, Mighell M, Pupello D. The use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty for proximal humeral fracture. J Bone Joint Surg Am. 2007;89(2):292–300. https://doi.org/10.2106/E.01310.

    Article  PubMed  Google Scholar 

  97. Holcomb JO, Cuff D, Petersen SA, Pupello DR, Frankle MA. Revision reverse shoulder arthroplasty for glenoid baseplate failure after primary reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2009;18(5):717–23. https://doi.org/10.1016/j.jse.2008.11.017.

    Article  PubMed  Google Scholar 

  98. Chalmers PN, Keener JD. Expanding roles for reverse shoulder arthroplasty. Curr Rev Musculoskelet Med. 2016;9(1):40–8. https://doi.org/10.1007/s12178-016-9316-0.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Maclean S, Malik SS, Evans S, Gregory J, Jeys L. Reverse shoulder endoprosthesis for pathologic lesions of the proximal humerus: a minimum 3-year follow-up. J Shoulder Elbow Surg. 2017;26(11):1990–4. https://doi.org/10.1016/j.jse.2017.04.005.

    Article  PubMed  Google Scholar 

  100. Grosel TW, Plummer DR, Mayerson JL, Scharschmidt TJ, Barlow JD. Oncologic reconstruction of the proximal humerus with a reverse total shoulder arthroplasty megaprosthesis. J Surg Oncol. 2018;118(6):867–72. https://doi.org/10.1002/jso.25061.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin M. Rugg.

Ethics declarations

Conflict of Interest

Caitlin M. Rugg, Monica J. Coughlan and Drew. A. Lansdown declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Reverse Shoulder Arthroplasty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rugg, C.M., Coughlan, M.J. & Lansdown, D.A. Reverse Total Shoulder Arthroplasty: Biomechanics and Indications. Curr Rev Musculoskelet Med 12, 542–553 (2019). https://doi.org/10.1007/s12178-019-09586-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-019-09586-y

Keywords

Navigation