Skip to main content
Log in

Reverse Total Shoulder Arthroplasty: Implant Design Considerations

  • Reverse Shoulder Arthroplasty (E Craig and C Chambers, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Our understanding of the reverse total shoulder arthroplasty (RTSA) has grown exponentially since Grammont first introduced his design in 1985. There are a multitude of implant-related variables to consider when performing RTSA. The purpose of this article is to provide a review of these design considerations.

Recent Findings

Current literature demonstrates that the traditional Grammont prosthesis has over 90% survivorship at 10 years. Despite these promising results, there have been concerns raised over the significant rate of scapular notching observed. As a result, the traditional RTSA design has been modified to minimize this complication and maximize impingement-free motion. Modern RTSA designs with a cementless, curved, short-stemmed eccentric onlay humeral component combined with a large, lateralized glenosphere placed in 10° of inferior tilt with > 3.5 mm of inferior overhang have been found to provide excellent results. However, all implant design features must be considered on a case-by-case basis to optimize outcome for each patient.

Summary

Humeral and glenoid implant design variables have evolved as the biomechanics of RTSA have been further elucidated. Consideration of these variables allows the surgeon to maximize joint efficiency, improve impingement-free range of motion, decrease the risk of scapular notching, preserve bone stock, and minimize the risk of instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Administration FaD. 510(k) summary: Delta shoulder. Rockville; 2003. http://www.accessdata.fda.gov/cdrh_docs/pdf2/K021478.pdf. Accessed June 12 2019

  2. Grammont PM, Baulot E. Delta shoulder prosthesis for rotator cuff rupture. Orthopedics. 1993;16(1):65–8.

    Article  CAS  Google Scholar 

  3. Jain NB, Higgins LD, Losina E, Collins J, Blazar PE, Katz JN. Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States. BMC Musculoskelet Disord. 2014;15:4. https://doi.org/10.1186/1471-2474-15-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nam D, Kepler CK, Neviaser AS, Jones KJ, Wright TM, Craig EV, et al. Reverse total shoulder arthroplasty: current concepts, results, and component wear analysis. J Bone Joint Surg Am. 2010;92(Suppl 2):23–35. https://doi.org/10.2106/JBJS.J.00769.

    Article  PubMed  Google Scholar 

  5. Gerber C, Pennington SD, Nyffeler RW. Reverse total shoulder arthroplasty. J Am Acad Orthop Surg. 2009;17(5):284–95.

    Article  Google Scholar 

  6. Wall B, Nove-Josserand L, O'Connor DP, Edwards TB, Walch G. Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Joint Surg Am. 2007;89(7):1476–85. https://doi.org/10.2106/JBJS.F.00666.

    Article  PubMed  Google Scholar 

  7. Levy J, Frankle M, Mighell M, Pupello D. The use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty for proximal humeral fracture. J Bone Joint Surg Am. 2007;89(2):292–300. https://doi.org/10.2106/JBJS.E.01310.

    Article  PubMed  Google Scholar 

  8. Levy JC, Virani N, Pupello D, Frankle M. Use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty in patients with glenohumeral arthritis and rotator cuff deficiency. J Bone Joint Surg Br. 2007;89(2):189–95. https://doi.org/10.1302/0301-620X.89B2.18161.

    Article  CAS  PubMed  Google Scholar 

  9. Rittmeister M, Kerschbaumer F. Grammont reverse total shoulder arthroplasty in patients with rheumatoid arthritis and nonreconstructible rotator cuff lesions. J Shoulder Elbow Surg. 2001;10(1):17–22. https://doi.org/10.1067/mse.2001.110515.

    Article  CAS  PubMed  Google Scholar 

  10. Bufquin T, Hersan A, Hubert L, Massin P. Reverse shoulder arthroplasty for the treatment of three- and four-part fractures of the proximal humerus in the elderly: a prospective review of 43 cases with a short-term follow-up. J Bone Joint Surg Br. 2007;89(4):516–20. https://doi.org/10.1302/0301-620X.89B4.18435.

    Article  CAS  PubMed  Google Scholar 

  11. Brorson S, Rasmussen JV, Olsen BS, Frich LH, Jensen SL, Hrobjartsson A. Reverse shoulder arthroplasty in acute fractures of the proximal humerus: a systematic review. Int J Shoulder Surg. 2013;7(2):70–8. https://doi.org/10.4103/0973-6042.114225.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flatow EL, Harrison AK. A history of reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2011;469(9):2432–9. https://doi.org/10.1007/s11999-010-1733-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berliner JL, Regalado-Magdos A, Ma CB, Feeley BT. Biomechanics of reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2015;24(1):150–60. https://doi.org/10.1016/j.jse.2014.08.003.

    Article  PubMed  Google Scholar 

  14. Grammont P, Trouilloud P, Laffay J, Deries X. Etude et realisation d’une nouvelle prothese d’ epaule. Rhumatologie. 1987;39:407–18.

    Google Scholar 

  15. Nyffeler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J Shoulder Elbow Surg. 2005;14(5):524–8. https://doi.org/10.1016/j.jse.2004.09.010.

    Article  PubMed  Google Scholar 

  16. Boileau P, Watkinson D, Hatzidakis AM, Hovorka I. Neer Award 2005: The Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elbow Surg. 2006;15(5):527–40. https://doi.org/10.1016/j.jse.2006.01.003.

    Article  PubMed  Google Scholar 

  17. Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elbow Surg. 2005;14(1 Suppl S):147S–61S. https://doi.org/10.1016/j.jse.2004.10.006.

    Article  PubMed  Google Scholar 

  18. Kolmodin J, Davidson IU, Jun BJ, Sodhi N, Subhas N, Patterson TE, et al. Scapular notching after reverse total shoulder arthroplasty: prediction using patient-specific osseous anatomy, implant location, and shoulder motion. J Bone Joint Surg Am. 2018;100(13):1095–103. https://doi.org/10.2106/JBJS.17.00242.

    Article  PubMed  Google Scholar 

  19. Alentorn-Geli E, Samitier G, Torrens C, Wright TW. Reverse shoulder arthroplasty. Part 2: systematic review of reoperations, revisions, problems, and complications. Int J Shoulder Surg. 2015;9(2):60–7. https://doi.org/10.4103/0973-6042.154771.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wiater JM, Moravek JE Jr, Budge MD, Koueiter DM, Marcantonio D, Wiater BP. Clinical and radiographic results of cementless reverse total shoulder arthroplasty: a comparative study with 2 to 5 years of follow-up. J Shoulder Elbow Surg. 2014;23(8):1208–14. https://doi.org/10.1016/j.jse.2013.11.032.

    Article  PubMed  Google Scholar 

  21. Friedman RJ, Barcel DA, Eichinger JK. Scapular notching in reverse total shoulder arthroplasty. J Am Acad Orthop Surg. 2019;27(6):200–9. https://doi.org/10.5435/JAAOS-D-17-00026.

    Article  PubMed  Google Scholar 

  22. Mollon B, Mahure SA, Roche CP, Zuckerman JD. Impact of scapular notching on clinical outcomes after reverse total shoulder arthroplasty: an analysis of 476 shoulders. J Shoulder Elbow Surg. 2017;26(7):1253–61. https://doi.org/10.1016/j.jse.2016.11.043.

    Article  PubMed  Google Scholar 

  23. Melis B, DeFranco M, Ladermann A, Mole D, Favard L, Nerot C, et al. An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years. J Bone Joint Surg Br. 2011;93(9):1240–6. https://doi.org/10.1302/0301-620X.93B9.25926.

    Article  CAS  PubMed  Google Scholar 

  24. Simovitch RW, Zumstein MA, Lohri E, Helmy N, Gerber C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg Am. 2007;89(3):588–600. https://doi.org/10.2106/JBJS.F.00226.

    Article  PubMed  Google Scholar 

  25. Levigne C, Garret J, Boileau P, Alami G, Favard L, Walch G. Scapular notching in reverse shoulder arthroplasty: is it important to avoid it and how? Clin Orthop Relat Res. 2011;469(9):2512–20. https://doi.org/10.1007/s11999-010-1695-8.

    Article  PubMed  Google Scholar 

  26. Sadoghi P, Leithner A, Vavken P, Holzer A, Hochreiter J, Weber G, et al. Infraglenoidal scapular notching in reverse total shoulder replacement: a prospective series of 60 cases and systematic review of the literature. BMC Musculoskelet Disord. 2011;12:101. https://doi.org/10.1186/1471-2474-12-101.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sirveaux F, Favard L, Oudet D, Huquet D, Walch G, Mole D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg Br. 2004;86(3):388–95.

    Article  CAS  Google Scholar 

  28. Kazley JM, Cole KP, Desai KJ, Zonshayn S, Morse AS, Banerjee S. Prostheses for reverse total shoulder arthroplasty. Expert Rev Med Devices. 2019;16(2):107–18. https://doi.org/10.1080/17434440.2019.1568237.

    Article  CAS  PubMed  Google Scholar 

  29. Harman M, Frankle M, Vasey M, Banks S. Initial glenoid component fixation in “reverse” total shoulder arthroplasty: a biomechanical evaluation. J Shoulder Elbow Surg. 2005;14(1 Suppl S):162S–7S. https://doi.org/10.1016/j.jse.2004.09.030.

    Article  PubMed  Google Scholar 

  30. Hopkins AR, Hansen UN, Bull AM, Emery R, Amis AA. Fixation of the reversed shoulder prosthesis. J Shoulder Elbow Surg. 2008;17(6):974–80. https://doi.org/10.1016/j.jse.2008.04.012.

    Article  PubMed  Google Scholar 

  31. Jasty M, Bragdon C, Burke D, O’Connor D, Lowenstein J, Harris WH. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg Am. 1997;79(5):707–14. https://doi.org/10.2106/00004623-199705000-00010.

    Article  CAS  PubMed  Google Scholar 

  32. Virani NA, Harman M, Li K, Levy J, Pupello DR, Frankle MA. In vitro and finite element analysis of glenoid bone/baseplate interaction in the reverse shoulder design. J Shoulder Elbow Surg. 2008;17(3):509–21. https://doi.org/10.1016/j.jse.2007.11.003.

    Article  PubMed  Google Scholar 

  33. Valenti P, Sekri J, Kany J, Nidtahar I, Werthel JD. Benefits of a metallic lateralized baseplate prolonged by a long metallic post in reverse shoulder arthroplasty to address glenoid bone loss. Int Orthop. 2018;43:2131–9. https://doi.org/10.1007/s00264-018-4249-4.

    Article  PubMed  Google Scholar 

  34. Greiner S, Schmidt C, Herrmann S, Pauly S, Perka C. Clinical performance of lateralized versus non-lateralized reverse shoulder arthroplasty: a prospective randomized study. J Shoulder Elbow Surg. 2015;24(9):1397–404. https://doi.org/10.1016/j.jse.2015.05.041.

    Article  PubMed  Google Scholar 

  35. Hasan SS, Levy JC, Leitze ZR, Kumar AG, Harter GD, Krupp RJ. Reverse Shoulder prosthesis with a lateralized glenosphere: early results of a prospective multicenter study stratified by diagnosis. Journal of Shoulder and Elbow Arthroplasty. 2019;3:2471549219844040.

    Article  Google Scholar 

  36. Cuff D, Clark R, Pupello D, Frankle M. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency: a concise follow-up, at a minimum of five years, of a previous report. J Bone Joint Surg Am. 2012;94(21):1996–2000. https://doi.org/10.2106/JBJS.K.01206.

    Article  PubMed  Google Scholar 

  37. • Cuff DJ, Pupello DR, Santoni BG, Clark RE, Frankle MA. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency: a concise follow-up, at a minimum of 10 years, of previous reports. J Bone Joint Surg Am. 2017;99(22):1895–9. https://doi.org/10.2106/JBJS.17.00175At a minimum follow-up of 10 years, implant survivorship was reported to be 90.7% when using a central compressive screw with 5.0-mm peripheral locking screws in conjunction with a lateralized baseplate for patients with rotator cuff arthropathy.

    Article  PubMed  Google Scholar 

  38. Chou J, Malak SF, Anderson IA, Astley T, Poon PC. Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: range of motion and risk of scapular notching. J Shoulder Elbow Surg. 2009;18(3):354–9. https://doi.org/10.1016/j.jse.2009.01.015.

    Article  PubMed  Google Scholar 

  39. Gutierrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, et al. Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elbow Surg. 2008;17(4):608–15. https://doi.org/10.1016/j.jse.2007.11.010.

    Article  PubMed  Google Scholar 

  40. Middernacht B, De Roo PJ, Van Maele G, De Wilde LF. Consequences of scapular anatomy for reversed total shoulder arthroplasty. Clin Orthop Relat Res. 2008;466(6):1410–8. https://doi.org/10.1007/s11999-008-0187-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Wilde LF, Poncet D, Middernacht B, Ekelund A. Prosthetic overhang is the most effective way to prevent scapular conflict in a reverse total shoulder prosthesis. Acta orthopaedica. 2010;81(6):719–26.

    Article  Google Scholar 

  42. Poon PC, Chou J, Young SW, Astley T. A comparison of concentric and eccentric glenospheres in reverse shoulder arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2014;96(16):e138. https://doi.org/10.2106/JBJS.M.00941.

    Article  PubMed  Google Scholar 

  43. De Biase CF, Delcogliano M, Borroni M, Castagna A. Reverse total shoulder arthroplasty: radiological and clinical result using an eccentric glenosphere. Musculoskeletal surgery. 2012;96(1):27–34.

    Article  Google Scholar 

  44. Gutierrez S, Walker M, Willis M, Pupello DR, Frankle MA. Effects of tilt and glenosphere eccentricity on baseplate/bone interface forces in a computational model, validated by a mechanical model, of reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2011;20(5):732–9. https://doi.org/10.1016/j.jse.2010.10.035.

    Article  PubMed  Google Scholar 

  45. Kempton LB, Balasubramaniam M, Ankerson E, Wiater JM. A radiographic analysis of the effects of glenosphere position on scapular notching following reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2011;20(6):968–74. https://doi.org/10.1016/j.jse.2010.11.026.

    Article  PubMed  Google Scholar 

  46. Edwards TB, Trappey GJ, Riley C, O'Connor DP, Elkousy HA, Gartsman GM. Inferior tilt of the glenoid component does not decrease scapular notching in reverse shoulder arthroplasty: results of a prospective randomized study. J Shoulder Elbow Surg. 2012;21(5):641–6. https://doi.org/10.1016/j.jse.2011.08.057.

    Article  PubMed  Google Scholar 

  47. Randelli P, Randelli F, Arrigoni P, Ragone V, D'Ambrosi R, Masuzzo P, et al. Optimal glenoid component inclination in reverse shoulder arthroplasty. How to improve implant stability. Musculoskelet Surg. 2014;98(Suppl 1):15–8. https://doi.org/10.1007/s12306-014-0324-1.

    Article  PubMed  Google Scholar 

  48. Tashjian RZ, Martin BI, Ricketts CA, Henninger HB, Granger EK, Chalmers PN. Superior baseplate inclination is associated with instability after reverse total shoulder arthroplasty. Clin Orthop Relat Res. 2018;476(8):1622–9. https://doi.org/10.1097/CORR.0000000000000340.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Langohr GD, Willing R, Medley JB, Athwal GS, Johnson JA. Contact mechanics of reverse total shoulder arthroplasty during abduction: the effect of neck-shaft angle, humeral cup depth, and glenosphere diameter. J Shoulder Elbow Surg. 2016;25(4):589–97. https://doi.org/10.1016/j.jse.2015.09.024.

    Article  PubMed  Google Scholar 

  50. Berhouet J, Garaud P, Favard L. Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2014;23(2):151–8. https://doi.org/10.1016/j.jse.2013.05.009.

    Article  PubMed  Google Scholar 

  51. Mollon B, Mahure SA, Roche CP, Zuckerman JD. Impact of glenosphere size on clinical outcomes after reverse total shoulder arthroplasty: an analysis of 297 shoulders. J Shoulder Elbow Surg. 2016;25(5):763–71. https://doi.org/10.1016/j.jse.2015.10.027.

    Article  PubMed  Google Scholar 

  52. • Torrens C, Guirro P, Miquel J, Santana F. Influence of glenosphere size on the development of scapular notching: a prospective randomized study. J Shoulder Elbow Surg. 2016;25(11):1735–41. https://doi.org/10.1016/j.jse.2016.07.006Larger (42 mm) glenospheres significantly reduce the incidence of scapular notching when compared with smaller (38 mm) sizes; however, they have no significant impact on functional outcomes.

    Article  PubMed  Google Scholar 

  53. •• Haggart J, Newton MD, Hartner S, Ho A, Baker KC, Kurdziel MD, et al. Neer Award 2017: wear rates of 32-mm and 40-mm glenospheres in a reverse total shoulder arthroplasty wear simulation model. J Shoulder Elbow Surg. 2017;26(11):2029–37. https://doi.org/10.1016/j.jse.2017.06.036Although larger glenospheres (40 mm) provide enhanced stability, they are associated with significantly greater polyethylene volume loss and volumetric wear rates.

    Article  PubMed  Google Scholar 

  54. Trouilloud P, Gonzalvez M, Martz P, Charles H, Handelberg F, Nyffeler RW, et al. Duocentric(R) reversed shoulder prosthesis and Personal Fit(R) templates: innovative strategies to optimize prosthesis positioning and prevent scapular notching. Eur J Orthop Surg Traumatol. 2014;24(4):483–95. https://doi.org/10.1007/s00590-013-1213-2.

    Article  CAS  PubMed  Google Scholar 

  55. Gutierrez S, Comiskey CA, Luo ZP, Pupello DR, Frankle MA. Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty. Hierarchy of surgical and implant-design-related factors. J Bone Joint Surg Am. 2008;90(12):2606–15. https://doi.org/10.2106/JBJS.H.00012.

    Article  PubMed  Google Scholar 

  56. Ladermann A, Denard PJ, Boileau P, Farron A, Deransart P, Terrier A, et al. Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. Int Orthop. 2015;39(11):2205–13. https://doi.org/10.1007/s00264-015-2984-3.

    Article  PubMed  Google Scholar 

  57. Oh JH, Shin SJ, McGarry MH, Scott JH, Heckmann N, Lee TQ. Biomechanical effects of humeral neck-shaft angle and subscapularis integrity in reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2014;23(8):1091–8. https://doi.org/10.1016/j.jse.2013.11.003.

    Article  PubMed  Google Scholar 

  58. Erickson BJ, Frank RM, Harris JD, Mall N, Romeo AA. The influence of humeral head inclination in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg. 2015;24(6):988–93. https://doi.org/10.1016/j.jse.2015.01.001.

    Article  PubMed  Google Scholar 

  59. • Gobezie R, Shishani Y, Lederman E, Denard PJ. Can a functional difference be detected in reverse arthroplasty with 135° versus 155° prosthesis for the treatment of rotator cuff arthropathy: a prospective randomized study. Journal of shoulder and elbow surgery. 2019;28(5):813–8 There was significantly less scapular notching noted among patients with 135° humeral inclination implant; however, there was no significant difference in range of motion when compared with the 155° prosthesis.

    Article  Google Scholar 

  60. Stephenson DR, Oh JH, McGarry MH, Rick Hatch GF, Lee TQ 3rd. Effect of humeral component version on impingement in reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2011;20(4):652–8. https://doi.org/10.1016/j.jse.2010.08.020.

    Article  PubMed  Google Scholar 

  61. Jeon BK, Panchal KA, Ji JH, Xin YZ, Park SR, Kim JH, et al. Combined effect of change in humeral neck-shaft angle and retroversion on shoulder range of motion in reverse total shoulder arthroplasty - a simulation study. Clin Biomech (Bristol, Avon). 2016;31:12–9. https://doi.org/10.1016/j.clinbiomech.2015.06.022.

    Article  Google Scholar 

  62. Berhouet J, Garaud P, Favard L. Influence of glenoid component design and humeral component retroversion on internal and external rotation in reverse shoulder arthroplasty: a cadaver study. Orthop Traumatol Surg Res. 2013;99(8):887–94. https://doi.org/10.1016/j.otsr.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  63. Aleem AW, Feeley BT, Austin LS, Ma CB, Krupp RJ, Ramsey ML, et al. Effect of humeral component version on outcomes in reverse shoulder arthroplasty. Orthopedics. 2017;40(3):179–86. https://doi.org/10.3928/01477447-20170117-04.

    Article  PubMed  Google Scholar 

  64. Rhee YG, Cho NS, Moon SC. Effects of humeral component retroversion on functional outcomes in reverse total shoulder arthroplasty for cuff tear arthropathy. J Shoulder Elbow Surg. 2015;24(10):1574–81. https://doi.org/10.1016/j.jse.2015.03.026.

    Article  PubMed  Google Scholar 

  65. De Boer F, Van Kampen P, Huijsmans P. Is there any influence of humeral component retroversion on range of motion and clinical outcome in reverse shoulder arthroplasty? A clinical study. Musculoskeletal surgery. 2017;101(1):85–9.

    Article  Google Scholar 

  66. Chan K, Langohr GDG, Mahaffy M, Johnson JA, Athwal GS. Does humeral component lateralization in reverse shoulder arthroplasty affect rotator cuff torque? Evaluation in a cadaver model. Clin Orthop Relat Res. 2017;475(10):2564–71. https://doi.org/10.1007/s11999-017-5413-7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ingrassia T, Nalbone L, Nigrelli V, Ricotta V, Pisciotta D. Biomechanical analysis of the humeral tray positioning in reverse shoulder arthroplasty design. International Journal on Interactive Design and Manufacturing (IJIDeM). 2018;12(2):651–61.

    Article  Google Scholar 

  68. Berhouet J, Kontaxis A, Gulotta LV, Craig E, Warren R, Dines J, et al. Effects of the humeral tray component positioning for onlay reverse shoulder arthroplasty design: a biomechanical analysis. J Shoulder Elbow Surg. 2015;24(4):569–77. https://doi.org/10.1016/j.jse.2014.09.022.

    Article  PubMed  Google Scholar 

  69. Glenday J, Kontaxis A, Roche S, Sivarasu S. Effect of humeral tray placement on impingement-free range of motion and muscle moment arms in reverse shoulder arthroplasty. Clin Biomech (Bristol, Avon). 2019;62:136–43. https://doi.org/10.1016/j.clinbiomech.2019.02.002.

    Article  Google Scholar 

  70. Henninger HB, Barg A, Anderson AE, Bachus KN, Burks RT, Tashjian RZ. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg. 2012;21(9):1128–35. https://doi.org/10.1016/j.jse.2011.07.034.

    Article  PubMed  Google Scholar 

  71. Henninger HB, King FK, Tashjian RZ, Burks RT. Biomechanical comparison of reverse total shoulder arthroplasty systems in soft tissue-constrained shoulders. J Shoulder Elbow Surg. 2014;23(5):e108–17. https://doi.org/10.1016/j.jse.2013.08.008.

    Article  PubMed  Google Scholar 

  72. LeDuc R, Salazar DH, Garbis NG. Incidence of post-operative acromial fractures with onlay vs inlay reverse shoulder arthroplasty. Journal of Shoulder and Elbow Surgery. 2019;28(6):e206.

    Article  Google Scholar 

  73. • Merolla G, Walch G, Ascione F, Paladini P, Fabbri E, Padolino A, et al. Grammont humeral design versus onlay curved-stem reverse shoulder arthroplasty: comparison of clinical and radiographic outcomes with minimum 2-year follow-up. J Shoulder Elbow Surg. 2018;27(4):701–10. https://doi.org/10.1016/j.jse.2017.10.016The standard inlay Grammont design and onlay reverse prosthesis with a latealized short, curved humeral stem provide similar short-term (i.e., 2 years) functional outcomes.

    Article  PubMed  Google Scholar 

  74. Giuseffi SA, Streubel P, Sperling J, Sanchez-Sotelo J. Short-stem uncemented primary reverse shoulder arthroplasty: clinical and radiological outcomes. Bone Joint J. 2014;96-B(4):526–9. https://doi.org/10.1302/0301-620X.96B3.32702.

    Article  CAS  PubMed  Google Scholar 

  75. Atoun E, Van Tongel A, Hous N, Narvani A, Relwani J, Abraham R, et al. Reverse shoulder arthroplasty with a short metaphyseal humeral stem. Int Orthop. 2014;38(6):1213–8. https://doi.org/10.1007/s00264-014-2328-8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Levy O, Narvani A, Hous N, Abraham R, Relwani J, Pradhan R, et al. Reverse shoulder arthroplasty with a cementless short metaphyseal humeral implant without a stem: clinical and radiologic outcomes in prospective 2- to 7-year follow-up study. J Shoulder Elbow Surg. 2016;25(8):1362–70. https://doi.org/10.1016/j.jse.2015.12.017.

    Article  PubMed  Google Scholar 

  77. Ballas R, Beguin L. Results of a stemless reverse shoulder prosthesis at more than 58 months mean without loosening. J Shoulder Elbow Surg. 2013;22(9):e1–6. https://doi.org/10.1016/j.jse.2012.12.005.

    Article  PubMed  Google Scholar 

  78. Moroder P, Ernstbrunner L, Zweiger C, Schatz M, Seitlinger G, Skursky R, et al. Short to mid-term results of stemless reverse shoulder arthroplasty in a selected patient population compared to a matched control group with stem. Int Orthop. 2016;40(10):2115–20. https://doi.org/10.1007/s00264-016-3249-5.

    Article  PubMed  Google Scholar 

  79. Sperling JW, Cofield RH, O'Driscoll SW, Torchia ME, Rowland CM. Radiographic assessment of ingrowth total shoulder arthroplasty. J Shoulder Elbow Surg. 2000;9(6):507–13.

    Article  CAS  Google Scholar 

  80. Middernacht B, Van Tongel A, De Wilde L. A critical review on prosthetic features available for reversed total shoulder arthroplasty. Biomed Res Int. 2016;2016:3256931. https://doi.org/10.1155/2016/3256931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gutierrez S, Luo ZP, Levy J, Frankle MA. Arc of motion and socket depth in reverse shoulder implants. Clin Biomech (Bristol, Avon). 2009;24(6):473–9. https://doi.org/10.1016/j.clinbiomech.2009.02.008.

    Article  Google Scholar 

  82. Carpenter S, Pinkas D, Newton MD, Kurdziel MD, Baker KC, Wiater JM. Wear rates of retentive versus nonretentive reverse total shoulder arthroplasty liners in an in vitro wear simulation. J Shoulder Elbow Surg. 2015;24(9):1372–9. https://doi.org/10.1016/j.jse.2015.02.016.

    Article  PubMed  Google Scholar 

  83. Smith T, Baunker A, Kramer M, Hurschler C, Kaufmann M, Pastor MF, et al. Biomechanical evaluation of inferior scapula notching of reverse shoulder arthroplasty depending on implant configuration and scapula neck anatomy. Int J Shoulder Surg. 2015;9(4):103–9. https://doi.org/10.4103/0973-6042.167932.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Giles JW, Langohr GD, Johnson JA, Athwal GS. Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res. 2015;473(11):3615–26. https://doi.org/10.1007/s11999-015-4526-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujash Sheth.

Ethics declarations

Conflict of Interest

Ujash Sheth declares that he has no conflict of interest.

Matthew Saltzman has received royalties from Medacta and Wright Medical.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Reverse Shoulder Arthroplasty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, U., Saltzman, M. Reverse Total Shoulder Arthroplasty: Implant Design Considerations. Curr Rev Musculoskelet Med 12, 554–561 (2019). https://doi.org/10.1007/s12178-019-09585-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-019-09585-z

Keywords

Navigation