Skip to main content

Advertisement

Log in

Human Umbilical Cord Wharton’s Jelly Stem Cells Undergo Enhanced Chondrogenic Differentiation when Grown on Nanofibrous Scaffolds and in a Sequential Two-stage Culture Medium Environment

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The current treatments used for osteoarthritis from cartilage damage have their disadvantages of donor site morbidity, complicated surgical interventions and risks of infection and graft rejection. Recent advances in tissue engineering have offered much promise in cartilage repair but the best cell source and in vitro system have not as yet been optimised. Human bone marrow mesenchymal stem cells (hBMSCs) have thus far been the cell of choice. However, we derived a unique stem cell from the human umbilical cord Wharton’s jelly (hWJSC) that has properties superior to hBMSCs in terms of ready availability, prolonged stemness characteristics in vitro, high proliferation rates, wide multipotency, non-tumorigenicity and tolerance in allogeneic transplantation. We observed enhanced cell attachment, cell proliferation and chondrogenesis of hWJSCs over hBMSCs when grown on PCL/Collagen nanoscaffolds in the presence of a two-stage sequential complex/chondrogenic medium for 21 days. Improvement of these three parameters were confirmed via inverted optics, field emission scanning electron microscopy (FESEM), MTT assay, pellet diameters, Alcian blue histology and staining, glycosaminglycans (GAG) and hyaluronic acid production and expression of key chondrogenic genes (SOX9, Collagen type II, COMP, FMOD) using immunohistochemistry and real-time polymerase chain reaction (qRT-PCR). In separate experiments we demonstrated that the 16 ng/ml of basic fibroblast growth factor (bFGF) present in the complex medium may have contributed to driving chondrogenesis. We conclude that hWJSCs are an attractive stem cell source for inducing chondrogenesis in vitro when grown on nanoscaffolds and exposed sequentially first to complex medium and then followed by chondrogenic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60, 243–262.

    Article  PubMed  CAS  Google Scholar 

  2. Oldershaw, R. A., Baxter, M. A., Lowe, E. T., Bates, N., Grady, L. M., Soncin, F., et al. (2010). Directed differentiation of human embryonic stem cells toward chondrocytes. Nature Biotechnology, 28, 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  3. Aleckovic, M., & Simon, C. (2008). Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reproductive Biomedicine Online, 17, 270–280.

    Article  PubMed  Google Scholar 

  4. Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reproductive Biomedicine Online, 15, 708–718.

    Article  PubMed  CAS  Google Scholar 

  5. Fong, C. Y., Subramanian, A., Biswas, A., Gauthaman, K., Srikanth, P., Hande, P., et al. (2010). Derivation efficiency, cell proliferation, frozen-thaw survival, ‘stemness’ properties, and differentiation of human Wharton’s jelly stem cells: their potential for concurrent banking with cord blood for regenerative medicine purposes. Reproductive Biomedicine Online, 21, 391–401.

    Article  PubMed  Google Scholar 

  6. Wu, Y. N., Yang, Z., Hui, J. H. P., Ouyang, H. W., & Lee, E. H. (2007). Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. Biomaterials, 28, 4056–4067.

    Article  PubMed  CAS  Google Scholar 

  7. Hou, T., Xu, J., Wu, X., Xie, Z., Luo, F., Zhang, Z., et al. (2009). Umbilical cord Wharton’s jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Engineering. Part A, 15, 2325–2334.

    Article  PubMed  CAS  Google Scholar 

  8. Gauthaman, K., Venugopal, J. R., Yee, F. C., Biswas, A., Ramakrishna, S., & Bongso, A. (2010). Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Engineering. Part A, 17, 71–81.

    Article  PubMed  Google Scholar 

  9. Karahuseyinglu, S., Cinar, O., & Kilic, E. (2007). Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells, 25, 319–331.

    Article  Google Scholar 

  10. Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PloS One, 3(1), e1451.

    Article  PubMed  Google Scholar 

  11. Wang, L., Tran, I., Seshareddy, K., Weiss, M. L., & Detamore, M. S. (2009). A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering. Part A, 15(8), 2259–2266.

    Article  PubMed  CAS  Google Scholar 

  12. Troyer, D. L., & Weiss, M. L. (2008). Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599.

    Article  PubMed  Google Scholar 

  13. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vivo. Nature Biotechnology, 18(4), 399–404.

    Article  PubMed  CAS  Google Scholar 

  14. Ayuzawa, R., Doi, C., Rachakatla, R., Pyle, M., Maurya, D., Troyer, D., et al. (2009). Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Letters, 280(1), 31–37.

    Article  PubMed  CAS  Google Scholar 

  15. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23(2), 220–229.

    Article  PubMed  Google Scholar 

  16. Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Kuo, Y., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.

    Article  PubMed  Google Scholar 

  17. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  18. Ma, Z., Kotaki, M., Inai, R., & Ramakrishna, S. (2005). Potential of nanofiber matrix as tissue engineering scaffolds. Tissue Engineering, 11(1–2), 101–119.

    Article  PubMed  Google Scholar 

  19. Venugopal, J. R., Ma, L. L., & Ramakrishna, S. (2005). Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Engineering, 11(5–6), 847–854.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, Y., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., & Lim, C. T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29(32), 4314–4322.

    Article  PubMed  CAS  Google Scholar 

  21. Mauck, R. L., Baker, B. M., Nerurkar, N. L., Burdick, J. A., Li, W. J., Tuan, R. S., et al. (2009). Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Engineering. Part B, Reviews, 15(2), 171–193.

    Article  PubMed  CAS  Google Scholar 

  22. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6), 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  23. Burdick, J., Mason, M., Hinman, A., Thorne, K., & Anseth, K. S. (2002). Delivery of osteoinductive growth factors from biodegradable PEG hydrogels influences osteoblast differentiation and mineralization. Journal of Control Release, 83(1), 53–60.

    Article  CAS  Google Scholar 

  24. Hwang, N. S., Varghese, S., Zhang, Z., & Elisseeff, J. (2006). Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Engineering, 12(9), 2695–2706.

    Article  PubMed  CAS  Google Scholar 

  25. Veilleux, N., & Spector, M. (2005). Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen–glycosaminoglycan scaffolds in vitro. Osteoarthritis and Cartilage, 13(4), 278–286.

    Article  PubMed  CAS  Google Scholar 

  26. Stevens, M. M., Marini, R. P., Martin, I., Langer, R., & Shastri, V. P. (2006). FGF-2 enhances TGF-ß1-induced periosteal chondrogenesis. Journal of Orthopaedic Research, 22(5), 1114–1119.

    Article  Google Scholar 

  27. Solchaga, L. A., Penick, K., Porter, J. D., Goldberg, V. M., Caplan, A. I., & Welter, J. F. (2005). FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology, 203(2), 398–409.

    Article  PubMed  CAS  Google Scholar 

Download references

Grant sponsors

National University of Singapore AcRF (R-174-000-122-112 and R-174-000-129-112)

Disclosures

The authors indicate no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariff Bongso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, CY., Subramanian, A., Gauthaman, K. et al. Human Umbilical Cord Wharton’s Jelly Stem Cells Undergo Enhanced Chondrogenic Differentiation when Grown on Nanofibrous Scaffolds and in a Sequential Two-stage Culture Medium Environment. Stem Cell Rev and Rep 8, 195–209 (2012). https://doi.org/10.1007/s12015-011-9289-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9289-8

Keywords

Navigation