Skip to main content

Advertisement

Log in

Platelet-rich plasma and other cellular strategies in orthopedic surgery

  • Biological Adjuvants in Orthopedic Surgery (J Dines and D Grande, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 15 July 2017

This article has been updated

Abstract

The use of biologics in the treatment of musculoskeletal disease has become increasingly more common as research studies continue to provide further elucidation of their mechanisms in healing. Platelet-rich plasma, patches, growth factors, and stem cells are among the many biologics under active investigation and have varying levels of success in augmenting surgical or nonoperative interventions. However, the limitations of these treatments exist, and clear guidelines for their indications and application have yet to be established. Well-designed clinical trials will help determine the appropriate future use of biologics to ensure consistent outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 July 2017

    An erratum to this article has been published.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Anz AW, Hackel JG, Nilssen EC, Andrews JR. Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis. J Am Acad Orthop Surg. 2014;22(2):68–79.

    PubMed  Google Scholar 

  2. DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: the PAW classification system. Arthroscopy. 2012;28(7):998–1009.

    Article  PubMed  Google Scholar 

  3. Mishra A, Harmon K, Woodall J, Vieira A. Sport medicine application of platelet rich plasma. Curr Pharm Biotechnol. 2012;13(7):1185–95.

    Article  CAS  PubMed  Google Scholar 

  4. Castillo T, Pouliot M, Kim H, Dragoo J. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39(2):266–71. Important study demonstrating the differences in platelet-rich concentrates and WBC concentration among commercially available PRP separation systems.

    Article  PubMed  Google Scholar 

  5. Giusti I, Rughetti A, D’Ascenzo S, et al. Identification of an optimal concentration of platelet gel for promoting angiogenesis in human endothelial cells. Transfusion. 2009;49(4):771–8.

    Article  PubMed  Google Scholar 

  6. Hsu WK, Mishra A, Rodeo SR, et al. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2013;21(12):739–48.

    PubMed  Google Scholar 

  7. Castricini R, Longo UG, De Benedetto M, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39(2):258–65.

    Article  PubMed  Google Scholar 

  8. Jo CH, Kim JE, Yoon KS, et al. Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am J Sports Med. 2011;39(10):2082–90.

    Article  PubMed  Google Scholar 

  9. Bergeson AG, Tashjian RZ, Greis PE, Crim J, Stoddard GJ, Burks RT. Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. Am J Sports Med. 2012;40(2):286–93.

    Article  PubMed  Google Scholar 

  10. Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40(6):1234–41. Excellent study design evaluating effect of PRP on rotator cuff tendon healing.

    Article  PubMed  Google Scholar 

  11. Podesta L, Crow S, Volkmer D, Bert T, Yocum L. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. Am J Sports Med. 2013;41(7):1689–94.

    Article  PubMed  Google Scholar 

  12. Peerbooms J, Sluimer J, Bruijn D, Gosens T. Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1-year follow-up. Am J Sports Med. 2011;38(2):255–62.

    Article  Google Scholar 

  13. Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med. 2006;24:1774–8.

    Article  Google Scholar 

  14. Gosens T, Peerbooms J, van Laar W, den Oudsten B. Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1200–8.

    Article  PubMed  Google Scholar 

  15. Ahmad CS, Redler LH, Ciccotti MG, et al. Evaluation and management of hamstring injuries. Am J Sports Med. 2013;41(12):2933–47.

    Article  PubMed  Google Scholar 

  16. Wetzel RJ, Patel RM, Terry MA. Platelet-rich plasma as an effective treatment for proximal hamstring injuries. Orthopedics. 2013;36(1):1217–20.

    Article  Google Scholar 

  17. Mejia MA, Bradley JP. The effects of platelet-rich plasma on muscle: basic science and clinical application. Oper Tech Sports Med. 2011;19(3):149–53.

    Article  Google Scholar 

  18. de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9.

    Article  PubMed  Google Scholar 

  19. de Jonge S, de Vos RJ, Weir A, van Schie HT, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med. 2011;39(8):1623–9.

    Article  PubMed  Google Scholar 

  20. Filardo G, Kon E, Roffi A, Di Matteo, et al. Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc. 2013:1–16.

  21. Filardo G, Kon E, et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single-versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2082–91.

    Article  PubMed  Google Scholar 

  22. Halpern BC, Chaudhury S, Rodeo SA. The role of platelet-rich plasma in inducing musculoskeletal tissue healing. HSS Journal. 2012;8(2):137–45.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kon E, Mandelbaum B, et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthrosc J Arthrosc & Rel Surg. 2011;11(27):1490–501.

    Article  Google Scholar 

  24. Patel S, Dhillon M, et al. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356–64.

    Article  PubMed  Google Scholar 

  25. Aurora A, McCarron JA, van den Bogert AJ, Gatica JE, Iannotti JP, Derwin KA. The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elbow Surg. 2012;21(8):1064–71. doi:10.1016/j.jse.2011.05.014.

    Article  PubMed  Google Scholar 

  26. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91. doi:10.1016/j.biomaterials.2008.11.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodde JP, Ernst DMJ, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J Wound Care. 2005;14(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  28. Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  29. Encalada-Diaz I, Cole BJ, Macgillivray JD, et al. Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months' follow-up. J Shoulder Elbow Surg. 2011;20(5):788–94. doi:10.1016/j.jse.2010.08.013.

    Article  PubMed  Google Scholar 

  30. Valentin JE, Badylak JS, McCabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am. 2006;88(12):2673–86. doi:10.2106/JBJS.E.01008.

    PubMed  Google Scholar 

  31. Ricchetti ET, Aurora A, Iannotti JP, Derwin KA. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2012;21(2):251–65. doi:10.1016/j.jse.2011.10.003.

    Article  PubMed  Google Scholar 

  32. Badhe SP, Lawrence TM, Smith FD, Lunn PG. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008;17(1 Suppl):35S–9S. doi:10.1016/j.jse.2007.08.005.

    Article  PubMed  Google Scholar 

  33. Halder A, Zobitz ME, Schultz E, An KN. Structural properties of the subscapularis tendon. J Orthop Res. 2000;18(5):829–34. doi:10.1002/jor.1100180522.

    Article  CAS  PubMed  Google Scholar 

  34. Metcalf MH, Savoie FH, Kellum B. Surgical technique for xenograft (SIS) augmentation of rotator-cuff repairs. Operative Techniques in Orthopaedics. 2002;12(3):204–8.

    Article  Google Scholar 

  35. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. Journal of Shoulder and Elbow Surgery. 2004;13(5):538–41. doi:10.1016/S1058274604001193.

    Article  PubMed  Google Scholar 

  36. Soler JA, Gidwani S, Curtis MJ. Early complications from the use of porcine dermal collagen implants (Permacol) as bridging constructs in the repair of massive rotator cuff tears. A report of 4 cases. Acta Orthop Belg. 2007;73(4):432–6.

    PubMed  Google Scholar 

  37. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(6):1238–44. doi:10.2106/JBJS.E.00524.

    PubMed  Google Scholar 

  38. Walton JR, Bowman NK, Khatib Y, Linklater J, Murrell GAC. Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am. 2007;89(4):786–91. doi:10.2106/JBJS.F.00315.

    PubMed  Google Scholar 

  39. Barber FA, Burns JP, Deutsch A, Labbé MR, Litchfield RB. A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy. 2012;28(1):8–15. doi:10.1016/j.arthro.2011.06.038.

    Article  PubMed  Google Scholar 

  40. Sarrafian TL, Wang H, Hackett ES, Yao JQ, et al. Comparison of Achilles tendon repair techniques in a sheep model using a cross-linked acellular porcine dermal patch and platelet-rich plasma fibrin matrix for augmentation. J Foot Ankle Surg. 2010;49(2):128–34.

    Article  PubMed  Google Scholar 

  41. Magnussen RA, Glisson RR, Moorman 3rd CT. Augmentation of Achilles tendon repair with extracellular matrix xenograft: a biomechanical analysis. Am J Sports Med. 2011;39(7):1522–7.

    Article  PubMed  Google Scholar 

  42. Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med. 2009;28(1):13–23. doi:10.1016/j.csm.2008.09.002.

    Article  PubMed  Google Scholar 

  43. Chan BP, Fu SC, Qin L, Rolf C, Chan KM. Supplementation-time dependence of growth factors in promoting tendon healing. Clinical Orthopaedics and Related Research. 2006;448:240–7. doi:10.1097/01.blo.0000205875.97468.e4.

    Article  CAS  PubMed  Google Scholar 

  44. Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med. 2011;39(4):811–9. doi:10.1177/0363546511399378.

    Article  PubMed  Google Scholar 

  45. Carpenter JE, Thomopoulos S, Flanagan CL, DeBano CM, Soslowsky LJ. Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. Journal of Shoulder and Elbow Surgery. 1998;7(6):599–605.

    Article  CAS  PubMed  Google Scholar 

  46. Seeherman HJ, Archambault JM, Rodeo SA, et al. rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg Am. 2008;90(10):2206–19.

    Article  PubMed  Google Scholar 

  47. Montgomery SR, Petrigliano FA, Gamradt SC. Biological augmentation of rotator cuff repair. Curr Rev Musculoskelet Med. 2011;4(4):221–30.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet derived growth factor BB-coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26(11):1456–62.

    Article  PubMed  Google Scholar 

  49. Hee CK, Dines JS, Dines DM, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med. 2011;39(8):1630–9.

    Article  PubMed  Google Scholar 

  50. Cummings SH, Grande DA, Hee, CK, et al. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: a histological and biomechanical study. J Tissue Eng. 2012;3(1).

  51. Solchaga LA, Bendele A, Shah V, et al. Comparison of the effect of intra-tendon applications of recombinant human platelet-derived growth factor-BB, platelet-rich plasma, steroids in a rat Achilles tendon collagenase model. J Orthop Res. 2014;32(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  52. Ni M, Lui PPY, Rui YF, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res. 2012;30(4):613–9. doi:10.1002/jor.21559.

    Article  CAS  PubMed  Google Scholar 

  53. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 2008;69(7):928–37. doi:10.2460/ajvr.69.7.928.

    Article  CAS  PubMed  Google Scholar 

  54. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009;37(11):2126–33. doi:10.1177/0363546509339582.

    Article  PubMed  Google Scholar 

  55. Gulotta LV, Kovacevic D, Montgomery S, Ehteshami JR, Packer JD, Rodeo SA. Stem cells genetically modified with the developmental gene MT1-MMP improve regeneration of the supraspinatus tendon-to-bone insertion site. Am J Sports Med. 2010;38(7):1429–37. doi:10.1177/0363546510361235.

    Article  PubMed  Google Scholar 

  56. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–9. doi:10.1177/0363546510395485.

    Article  PubMed  Google Scholar 

  57. Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit model. Am J Sports Med. 2012;40(6):1259–68. doi:10.1177/0363546512442343.

    Article  PubMed  Google Scholar 

  58. Chung SW, Song BW, Kim YH, Park KU, Oh JH. Effect of platelet-rich plasma and porcine dermal collagen graft augmentation for rotator cuff healing in a rabbit model. Am J Sports Med. 2013;41(12):2909–18. doi:10.1177/0363546513503810.

    Article  PubMed  Google Scholar 

  59. Butler DL, Juncosa-Melvin N, Boivin GP, et al. Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008;26(1):1–9. doi:10.1002/jor.20456.

    Article  PubMed  Google Scholar 

  60. Shea KP, McCarthy MB, Ledgard F, Arciero C, Chowaniec D, Mazzocca AD. Human tendon cell response to 7 commercially available extracellular matrix materials: an in vitro study. Arthroscopy. 2010;26(9):1181–8. doi:10.1016/j.arthro.2010.01.020.

    Article  PubMed  Google Scholar 

  61. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006;88(12):2665–72. doi:10.2106/JBJS.E.01307.

    PubMed  Google Scholar 

  62. Wolfstadt J, Cole B, Ogilvie-Harris D, Viswanathan S, et al. Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports Health: A Multidisciplinary Approach. 2014.

  63. McCarell T, Fortier L. Temporal growth factor release from platelet‐rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. Journal of Orthopaedic Research. 2009;27(8):1033–42.

    Article  Google Scholar 

  64. Braun HJ et al. The effect of platelet-rich plasma formulations and blood products on human synoviocytes implications for intra-articular injury and therapy. Am J Sports Med. 2014;42(5):1204–10.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Phillip N. Williams, James P. Bradley, George Moran, and Neal El Attrache declare that they have no conflict of interest. Joshua S. Dines reports personal fees from Arthrex and from Conmed Linvatec, outside the submitted work.

Human and Animal Rights and Informed Consent

No human or animal studies performed by the authors: this article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip N. Williams.

Additional information

This article is part of the Topical Collection on Biological Adjuvants in Orthopedic Surgery

An erratum to this article is available at https://doi.org/10.1007/s12178-017-9428-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, P.N., Moran, G., Bradley, J.P. et al. Platelet-rich plasma and other cellular strategies in orthopedic surgery. Curr Rev Musculoskelet Med 8, 32–39 (2015). https://doi.org/10.1007/s12178-014-9246-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-014-9246-7

Keywords

Navigation