Skip to main content
Log in

Electrochemical Determination of Bisphenol A at Multi-walled Carbon Nanotubes/Poly (Crystal Violet) Modified Glassy Carbon Electrode

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) can disrupt endocrine system. In this study, a novel and sensitive electrochemical senor based on multi-walled carbon nanotubes (MWCNTs) and poly crystal violet (PCV) modified glass carbon electrode (GCE) was developed for determination of BPA. The morphologies and properties of modified electrode were characterized by scanning electron microscopy and electrochemical impedance spectra. Compared with bare GCE and other modified electrodes, this MWCNTs/PCV/GCE exhibited an excellent electrocatalytic role for the oxidation of BPA by significantly enhancing the current response and decreasing the BPA oxidation overpotential. Under optimum conditions, the electrochemical sensor can be applied to the quantification of BPA by linear sweep voltammetry (LSV) with a linear range covering 5 × 10−8–1 × 10−4 mol L−1 (with a correlation coefficient of 0.9969), and the limit detection was 1 × 10−8 mol L−1 (S/N = 3). The recovery was between 98.38 and 103.51% in real plastic samples. This strategy might enable more opportunities for the electrochemical determination of BPA in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkasir RS, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol a. Biosens Bioelectron 26:43–49. doi:10.1016/j.bios.2010.05.001

    Article  CAS  Google Scholar 

  • Anson FC (1964) Evidence for adsorption of cobale(III)-(ethylenedinitrilo)tetraacetate at platinum electrodes. Anal Chem 36:520–523. doi:10.1021/ac60209a058

    Article  CAS  Google Scholar 

  • Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol a in food. J Chromatogr A 1216:449–469. doi:10.1016/j.chroma.2008.06.037

    Article  Google Scholar 

  • Bard AJ (1980) Faulkner LR electrochemical methods: fundamentals applications, second edn. Wiley, New York

    Google Scholar 

  • Barsan MM, Ghica ME, Brett CMA (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23. doi:10.1016/j.aca.2015.02.059

    Article  CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes–the route toward applications. Science 297:787–792. doi:10.1126/science.1060928

    Article  CAS  Google Scholar 

  • Biedermann-Brem S, Grob K (2009) Release of bisphenol a from polycarbonate baby bottles: water hardness as the most relevant factor. Eur Food Res Technol 228:679–684. doi:10.1007/s00217-008-0978-8

    Article  CAS  Google Scholar 

  • Finklea HO, Snider DA, Fedyk J, Sabatani E, Gafni Y, Rubinstein I (1993) Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. Langmuir 9:3660–3667. doi:10.1021/la00036a050

    Article  CAS  Google Scholar 

  • Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotubewires for high-power biofuel cells. Nat Commun 1–2:1–7. doi:10.1038/ncomms1000

    Google Scholar 

  • Ghica ME, Ferreira GM, Brett CMA (2015) Poly(thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electr 19:2869–2881. doi:10.1007/s10008-015-2926-4

    Article  CAS  Google Scholar 

  • Gong KP, Yan YM, Zhang MN, Su L, Xiong SX, Mao LQ (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci 21:1383–1393. doi:10.2116/analsci.21.1383

    Article  CAS  Google Scholar 

  • Jing P, Zhang XM, Wu ZX, Bao L, Xu YL, Liang CZ, Cao WQ (2015) Electrochemical sensing of bisphenol a by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta 141:41–46. doi:10.1016/j.talanta.2015.03.042

    Article  CAS  Google Scholar 

  • Kaur B, Satpati B, Srivastava R (2016) ZrO2 supported Nano-ZSM-5 nanocomposite material for the nanomolar electrochemical detection of metol and bisphenol a. RSC Adv 6:65736–65746. doi:10.1039/C6RA08391A

    Article  CAS  Google Scholar 

  • Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393. doi:10.1016/S0022-0728(74)80448-1

    Article  CAS  Google Scholar 

  • Li Y, Gao Y, Cao Y, Li H (2012) Electrochemical sensor for bisphenol a determination based on MWCNT/melamine complex modified GCE. Sensors Actuators B Chem 171–172:726–733. doi:10.1016/j.snb.2012.05.063

    Article  Google Scholar 

  • Li YH, Zhai XR, Liu XS, Wang L, Liu HR, Wang HB (2016) Electrochemical determination of bisphenol a at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369. doi:10.1016/j.talanta.2015.11.010

    Article  CAS  Google Scholar 

  • Lin YQ, Liu KY, Liu CY, Yin L, Kang Q, Li LB, Li B (2014) Electrochemical sensing of bisphenol a based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochim Acta 133:492–500. doi:10.1016/j.electacta.2014.04.095

    Article  CAS  Google Scholar 

  • Lin YQ, Zhu NN, Yu P, Su L, Mao LQ (2009) A physiologically relevant on-line electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion. Anal Chem 81:2067–2074. doi:10.1021/ac801946s

    Article  CAS  Google Scholar 

  • Lumibao CY, Tillekeratne LMV, Kirchhoff JR, Fouchard DMD, Hudsona RA (2008) Electrochemical and Electrocatalytic properties of imidazole analogues of the redox cofactor Pyrroloquinoline Quinone. Electroanalysis 20:2177–2184. doi:10.1002/elan.200804315

    Article  CAS  Google Scholar 

  • Niu XL, Yang W, Wang GY, Ren J, Guo H, Gao JZ (2013) A novel electrochemical sensor of bisphenol a based on stacked grapheme nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim Acta 98:167–175. doi:10.1016/j.electacta.2013.03.064

    Article  CAS  Google Scholar 

  • Pereira GF, Andrade LS, Rocha-Filho RC, Bocchi N, Biaggio SR (2012) Electrochemical determination of bisphenol a using a boron-doped diamond electrode. Electrochim Acta 82:3–8. doi:10.1016/j.electacta.2012.03.157

    Article  CAS  Google Scholar 

  • Peña RC, Bertotti M, Brett CMA (2011) Methylene blue/multi-wall carbon nanotube modified electrode for the amperometric determination of hydrogen peroxide. Electroanal 23:2290–2296. doi:10.1002/elan.201100324

  • Ren J, Kang T, Xue R, Ge C, Cheng S (2011) Electroanalysis of bisphenol a at a multi-walled carbon nanotubes-gold nanoparticles modified glassy carbon electrode. Microchim Acta 174:303–309. doi:10.1002/elan.200900195

    Article  CAS  Google Scholar 

  • Reza KK, Ali MA, Srivastava S, Agrawal VV, Biradar AM (2015) Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol a sensor. Biosens Bioelectron 74:644–651. doi:10.1016/j.bios.2015.07.020

    Article  CAS  Google Scholar 

  • Sabatani E, Rubinstein I, Maoz R, Sagiv J (1987) Organized self-assembling monolayers on electrodes: part I. Octadecyl derivatives on gold. J Electroanal Chem 219:365–371. doi:10.1016/0022-0728(87)85054-4

    Article  CAS  Google Scholar 

  • Sajiki J, Takahashi K, Yonekubo J (1999) Sensitive method for the determination of bisphenol a in serum using two system of high-performance liquid chromatography. J Chromatogr B 736:255–261. doi:10.1016/S0378-4347(99)00471-5

    Article  CAS  Google Scholar 

  • Santhosh P, Manesh KM, Lee KP, Gopalan AI (2006) Enhanced Electrocatalysis for the reduction of hydrogen peroxide at new multiwall carbon nanotube grafted Polydiphenylamine modified electrode. Electroanalysis 18:894–903. doi:10.1002/elan.200503474

    Article  CAS  Google Scholar 

  • Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Chafers C, Vandenbergh GF, Watts M, Wenzel A (2003) Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54:302–314. doi:10.1016/S0147-6513(02)00039-8

    Article  CAS  Google Scholar 

  • Shin HS, Park CH, Park SJ, Pyo H (2001) Sensitive determination of bisphenol a in environmental water by gas chromatography with nitrogen–phosphorus detection after cyanomethylation. J Chromatogr A 912:119–125. doi:10.1016/S0021-9673(01)00570-2

    Article  CAS  Google Scholar 

  • Shim M, Shi Kam N, Chen R, Li Y, Dai H (2002) Functionalization of carbon nano-tubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288. doi:10.1021/nl015692j

    Article  CAS  Google Scholar 

  • Tang J, Jin BK (2016) Poly (crystal violet) - multi-walled carbon nanotubes modified electrode for electroanalytical determination of luteolin. J Electroanal Chem 780:46–52. doi:10.1016/j.jelechem.2016.08.037

    Article  CAS  Google Scholar 

  • Wang JY, Su YL, Wu BH, Cheng SH (2016) Reusable electrochemical sensor for bisphenol a based on ionic liquid functionalized conducting polymer platform. Talanta 147:103–110. doi:10.1016/j.talanta.2015.09.035

    Article  CAS  Google Scholar 

  • Wang MY, Zhang DE, Tong ZW, Xu XY, Yang XJ (2011) Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J Appl Electrochem 41:189–196. doi:10.1007/s10800-010-0223-6

    Article  Google Scholar 

  • Wang SH, Wei XT, Du LY, Zhuang HS (2005) Determination of bisphenol a using a flow injection inhibitory chemiluminescence method. Luminescence 20:46–50. doi:10.1002/bio.804

    Article  Google Scholar 

  • Wang X, Zeng H, Zhao L, Lin JM (2006) Selective determination of bisphenol a (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl β-cyclodextrin complex. Anal Chim Acta 556:313–318. doi:10.1016/j.aca.2005.09.060

    Article  CAS  Google Scholar 

  • Xu Y, Zhang X, Wang Y, He P, Fang Y (2010) Enhancement of electrochemical capacitance of carbon nanotubes by polythionine modification. Chin J Chem 28:417–421. doi:10.1002/cjoc.201090089

    Article  CAS  Google Scholar 

  • Yin H, Zhou Y, Ai S, Han R, Tang T, Zhu L (2010) Electrochemical behavior of bisphenol a at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim Acta 170:99–105. doi:10.1007/s00604-010-0396-z

    Article  CAS  Google Scholar 

  • Yu XW, Chen YK, Chang LP, Zhou L, Tang FX, Wu XP (2013) β-cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol a. Sensor Actuat B 186:648–656. doi:10.1016/j.snb.2013.06.089

    Article  CAS  Google Scholar 

  • Zhang M, Yu P, Mao L (2012) Rationally design surface/interface chemistry for quantitative monitoring of brain chemistry. Acc Chem Res 45:533–543. doi:10.1021/ar200196h

    Article  CAS  Google Scholar 

  • Zhang Y, Zhuang HZ, Lu H (2009) Electrocatalytic oxidation of hydroquinone at poly(crystal-violet) film-modified electrode and its selective determination in the presence of o-hydroquinone and m-hydroquinone. Anal Lett 42:339–351. doi:10.1080/00032710802507885

    Article  CAS  Google Scholar 

  • Zhang YX, Cheng YX, Zhou YY, Li BY, Gu W, Shi XH, Xian YZ (2013) Electrochemical sensor for bisphenol a based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 107:211–218. doi:10.1016/j.talanta.2013.01.012

    Article  CAS  Google Scholar 

  • Zhao MP, Li YZ, Guo ZQ, Zhang XX, Chang WB (2002) A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta 57:1205–1210. doi:10.1016/S0039-9140(02)00207-2

    CAS  Google Scholar 

  • Zhou GZ, Jiang YY, Sun YX, Zheng QY (2007) Electrocatalysis actions of poly (crystal violet) film modified electrode on the ofloxacin. Chin J Pharma Anal 27:201–203. doi:10.16155/j.0254 -1793.2007.02.029

    CAS  Google Scholar 

  • Zhu LL, Cao YH, Cao GQ (2014) Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A. Biosens Bioelectron 54:258–261. doi:10.1016/j.bios.2013.10.072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Tang or Jianfei Wang.

Ethics declarations

Funding

This work was supported by the National Nature Foundation of China (21375001, 21607002), the Project of Education Department of Anhui Province (KJ2017A506), the key discipline of Anhui Science and Technology University (AKZDXK2015A01), the Foundation of Anhui Science and Technology University (ZRC2016485) and the Student’s Platform for Innovation and Entrepreneurship Trainning Program of China (S10879CX22, 201510879002).

Conflict of Interest

Wei Wang declares that he has no conflict of interest. Jing Tang declares that she has no conflict of interest. Shengbiao Zheng declares that he has no conflict of interest. Xiaoqing Ma declares that she has no conflict of interest. Jinkun Zhu declares that he has no conflict of interest. Feiyue Li declares that he has no conflict of interest. Jianfei Wang declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tang, J., Zheng, S. et al. Electrochemical Determination of Bisphenol A at Multi-walled Carbon Nanotubes/Poly (Crystal Violet) Modified Glassy Carbon Electrode. Food Anal. Methods 10, 3815–3824 (2017). https://doi.org/10.1007/s12161-017-0944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0944-9

Keywords

Navigation