Skip to main content

Chemical Characterization of Volatile Organic Compounds (VOCs) Through Headspace Solid Phase Micro Extraction (SPME)

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

Plants are able to store and emit a wide array of volatile organic compounds, also known as VOCs, which play a pivotal role in their interaction with the ecosystems. These VOCs, released as a mixture of lipophilic compounds with low molecular weight, are produced by different biosynthetic pathways and actively participate in plant defensive strategies against both abiotic and biotic stress factors. Among them, plant-plant interaction, the attraction of pollinators and/or parasitoids and the signaling between symbiont organisms, are the most documented. The development of techniques aimed in trapping, analyze, identify, and quantify plant volatiles, coupled to the evolution of gas chromatography-mass spectrometry analytical methods, as well as the possibility to monitor in-vivo the changes in VOCs production, has significantly increased our knowledge concerning VOCs biosynthesis and their ecological role. This chapter will introduce an overview concerning the ecological role of plant volatiles as well as the biosynthetic pathways involved in their production. Moreover, it will describe the materials as well as the analytical steps that should be followed for static headspace VOCs analysis through solid-phase microextraction (SPME), which is one of the most common, repeatable and accepted technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araniti F, Graña E, Reigosa MJ, Sánchez-Moreiras AM, Abenavoli MR (2013a) Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana. Nat Prod Res 27(24):2297–2303

    Article  CAS  PubMed  Google Scholar 

  • Araniti F, Lupini A, Sorgonà A, Statti GA, Abenavoli MR (2013b) Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi. Nat Prod Res 27:1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM (2016) Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PLoS One 11(8):e0160202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araniti F, Bruno L, Sunseri F, Pacenza M, Forgione I, Bitonti MB, Abenavoli MR (2017a) The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. Plant Physiol Biochem 121:14–20

    Article  CAS  PubMed  Google Scholar 

  • Araniti F, Lupini A, Sunseri F, Abenavoli MR (2017b) Allelopatic potential of Dittrichia viscosa (L.) W. Greuter mediated by VOCs: a physiological and metabolomic approach. PLoS One 12:e0170161

    Article  PubMed  PubMed Central  Google Scholar 

  • Araniti F, Sánchez-Moreiras AM, Graña E, Reigosa MJ, Abenavoli MR (2017c) Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis. Plant Biol 19(1):79–89

    Article  CAS  PubMed  Google Scholar 

  • Arimura GI, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithoefer A, Boland W (2008a) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227:453–464

    Article  CAS  PubMed  Google Scholar 

  • Arimura GI, Kopke S, Kunert M, Volpe V, David A, Brand P, Dabrowska P, Maffei ME, Boland W (2008b) Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol 146:965–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Panigrahi S (2011) Solid-phase microextraction (SPME) techniques for quality characterization of food products: a review. Food Bio Tech 4:1–26

    Article  CAS  Google Scholar 

  • Cai J, Liu B, Su Q (2001) Comparison of simultaneous distillation extraction and solid-phase microextraction for the determination of volatile flavor components. J Chromatogr A 930:1–7

    Article  CAS  PubMed  Google Scholar 

  • Cheong J-J, Do Choi Y (2003) Methyl jasmonate as a vital substance in plants. Trends Gen 19:409–413

    Article  CAS  Google Scholar 

  • Copolovici LO, Filella I, Llusia J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol 130:466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49:194–207

    Article  CAS  PubMed  Google Scholar 

  • Davies P (2013) Plant hormones: physiology, biochemistry and molecular biology. Springer Science & Business Media, Berlin

    Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577

    Article  CAS  PubMed  Google Scholar 

  • Deasy W, Shepherd T, Alexander CJ, Birch ANE, Evans KA (2016) Development and validation of a SPME-GC-MS method for in situ passive sampling of root volatiles from glasshouse-grown broccoli plants undergoing below-ground herbivory by larvae of cabbage root fly, Delia radicum L. Phytochem Anal 27:375–393

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Loreto F (2010) Induced plant volatiles: from genes to climate change. Trends Plant Sci 15:115–117

    Article  CAS  PubMed  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125:504–511

    Article  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotech 19:1–9

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Critical Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E (2005) Is the (E)-β-farnesene only volatile terpenoid in aphids? J Appl Entomol 129:6–11

    Article  CAS  Google Scholar 

  • Gigot C, Ongena M, Fauconnier M-L, Wathelet J-P, Du Jardin P, Thonart P (2010) The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles. BASE 14:451

    Google Scholar 

  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ, Katzir N, Lewinsohn E (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61:1111–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Górecki T, Yu X, Pawliszyn J (1999) Theory of analyte extraction by selected porous polymer SPME fibres. Analyst 124:643–649

    Article  Google Scholar 

  • Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotech J 13:727–739

    Article  CAS  Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34(5):1201–1218

    Article  CAS  Google Scholar 

  • Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants–a mechanism for associational herbivore resistance? New Phytol 186:722–732

    Article  CAS  PubMed  Google Scholar 

  • Hsieh M-H, Chang C-Y, Hsu S-J, Chen J-J (2008) Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673

    Article  CAS  PubMed  Google Scholar 

  • Jürgens A, El-Sayed AM, Suckling DM (2009) Do carnivorous plants use volatiles for attracting prey insects? Funct Ecol 23:875–887

    Article  Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, London, pp 27–52

    Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kunert G, Otto S, Röse US, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603

    Article  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photos Res 92:163–179

    Article  CAS  Google Scholar 

  • Lin C, Owen SM, Penuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. South Afr J Bot 76(4):612–631

    Article  CAS  Google Scholar 

  • McCormick AC, Gershenzon J, Unsicker SB (2014) Little peaks with big effects: the role of minor plant volatiles in plant insect interactions. Plant Cell Environ 37(8):1836–1844

    Article  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memari HR, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets U, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Dordrecht, pp 47–93

    Chapter  Google Scholar 

  • National Institute of Standards and Technology (2014) PC version 2.2 of the NIST/EPA/NIH Mass Spectral Database

    Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  PubMed  Google Scholar 

  • Owen SM, Penuelas J (2005) Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10:420–426

    Article  CAS  PubMed  Google Scholar 

  • Owen S, Boissard C, Street RA, Duckham SC, Csiky O, Hewitt CN (1997) Screening of 18 Mediterranean plant species for volatile organic compound emissions. Atmosph Environ 31:101–117

    Article  CAS  Google Scholar 

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ 35:5393–5409

    Article  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1996) Plant volatile signals in response to herbivore feeding. Fla Entomol 95:93–103

    Article  Google Scholar 

  • Pawliszyn J (2011) Handbook of solid phase microextraction. Elsevier, London

    Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Ballare CL, Dicke M (2014) Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ 37:1845–1853

    Article  PubMed  Google Scholar 

  • Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24

    Article  CAS  PubMed  Google Scholar 

  • Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967

    Article  CAS  PubMed  Google Scholar 

  • Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494

    Article  Google Scholar 

  • Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat J-L, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732

    Article  CAS  PubMed  Google Scholar 

  • Razal RA, Ellis S, Singh S, Lewis NG, Towers GN (1996) Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry 41:31–35

    Article  CAS  Google Scholar 

  • Reineccius G (2016) Flavor chemistry and technology. CRC Press, Boca Raton

    Google Scholar 

  • Rosenkranz M, Schnitzler JP (2013) Genetic engineering of BVOC emissions from trees. In: Biology, controls and models of tree volatile organic compound emissions. Springer, Dordrecht, pp 95–118

    Chapter  Google Scholar 

  • Ruther J, Kleier S (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka L (1959) Isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367

    Article  Google Scholar 

  • Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia 126:531–534

    Article  PubMed  Google Scholar 

  • Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Silva ÉAS, Saboia G, Jorge NC, Hoffmann C, dos Santos Isaias RM, Soares GL, Zini CA (2017) Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Talanta 175:9–20

    Article  CAS  Google Scholar 

  • Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Kim DG, Lee SH (2005) Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper (Capsicum annuum L.). J Plant Biol 48:292–297

    Article  CAS  Google Scholar 

  • Soto VC, Maldonado IB, Jofré VP, Galmarini CR, Silva MF (2015) Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC–MS: relationship with pollination and seed production. Microchem J 122:110–118

    Article  CAS  Google Scholar 

  • Stashenko EE, Jaramillo BE, Martınez JR (2004) Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) NE Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. J Chromatogr A 1025:93–103

    Article  CAS  PubMed  Google Scholar 

  • Taveira M, Fernandes F, Guedes de Pinho P, Andrade PB, Pereira JA, Valentão P (2009) Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT–MS. Microchem J 93(2):140–146

    Article  CAS  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse US, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    Article  CAS  PubMed  Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11:463–471

    Article  Google Scholar 

  • Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 28:318–327

    Article  CAS  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2010) Introduction: biochemistry, physiology and ecological functions of secondary metabolites. Annual plant reviews vol 40: biochemistry of plant secondary metabolism, 2nd ed, pp 1–19

    Google Scholar 

  • Wohlers P (1981) Effects of the alarm pheromone (e)-β-farnesene on dispersal behaviour of the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 29:117–124

    Article  CAS  Google Scholar 

  • Wu JQ, Baldwin IT (2009) Herbivory-induced signalling in plants: perception and action. Plant Cell Environ 32:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Arimura G-i, Ohnishi T (2017) “Hidden” terpenoids in plants: their biosynthesis, localisation and ecological roles. Plant Cell Physiol 58:1615–1621

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Araniti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araniti, F., Pantò, S., Lupini, A., Sunseri, F., Abenavoli, M.R. (2018). Chemical Characterization of Volatile Organic Compounds (VOCs) Through Headspace Solid Phase Micro Extraction (SPME). In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_24

Download citation

Publish with us

Policies and ethics