Skip to main content
Log in

Effect of Hemicelluloses Fractionated by Graded Ethanol Precipitation from Corn Stover on the Enzymatic Hydrolysis of Lignocellulosic Biomass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The presence of hemicellulose inhibits the enzymatic hydrolysis of lignocellulosic biomass. The purpose of this study is to investigate the effect of different hemicellulose fractions on the enzymatic hydrolysis and the way to eliminate the inhibiting effect caused by hemicellulose. Four kinds of hemicelluloses, namely, HXF, H15, H30, and H60, were first extracted from corn stover by ethanol fractional precipitation. The structures of hemicellulose samples were analyzed using Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and high-performance ion chromatography. The results show that H30 has the strongest inhibition on the enzymatic hydrolysis of Avicel and corn stover, presenting inhibition ratio of 13.35% and 9.98%, respectively. The inhibition ratios of other hemicelluloses in Avicel and corn stover are 8–12% and 5–9%, respectively. However, the inhibiting effect caused by H30 is removed by adding hemicellulase, which even presents a 4.99% increase in the efficiency of enzymatic hydrolysis of corn stover. The corresponding glucose concentration reached 68.11 g/L. This research could help design effective processes to promote the enzymatic hydrolysis of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Cherubini F, Strømman AH (2010) Production of biofuels and biochemicals from lignocellulosic biomass: estimation of maximum theoretical yields and efficiencies using matrix algebra. Energy Fuels 24:2657–2666. https://doi.org/10.1021/ef901379s

    Article  CAS  Google Scholar 

  2. Fatma S, Hameed A, Noman M, Ahmed T, Shahid M, Tariq M, Sohail I, Tabassum R (2018) Lignocellulosic biomass: a sustainable bioenergy source for the future. Protein Pept Lett 25:148–163. https://doi.org/10.2174/0929866525666180122144504

    Article  CAS  PubMed  Google Scholar 

  3. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by hypocrea jecorina. Biotechnol Biofuels 2:19. https://doi.org/10.1186/1754-6834-2-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mateos E, Ormaetxea L (2018) Sustainable renewable energy by means of using residual forest biomass. Energies 12:13. https://doi.org/10.3390/en12010013

    Article  CAS  Google Scholar 

  5. Lu X, Wang C, Li X, Zhao J (2017) Temperature and pH influence adsorption of cellobiohydrolase onto lignin by changing the protein properties. Bioresour Technol 245:819–825. https://doi.org/10.1016/j.biortech.2017.08.139

    Article  CAS  PubMed  Google Scholar 

  6. Mou H, Wu S, He M, Liu H, Huang H, Xu C (2018) Study of the difference between enzyme adsorption onto hydrotropic and alkali lignin separated from eucalyptus and bamboo. Bioresources 13:1441–1456. https://doi.org/10.15376/biores.13.1.1441-1456

    Article  CAS  Google Scholar 

  7. Hu G, Heitmann JA, Zhong B, Lucia LA, Argyropoulos DS (2015) Quantitative study of the interfacial adsorption of cellullase to cellulose. J Phys Chem C 119:14160–14166. https://doi.org/10.1021/acs.jpcc.5b02011

    Article  CAS  Google Scholar 

  8. Chen H, Zhao X, Liu D (2016) Relative significance of the negative impacts of hemicelluloses on enzymatic cellulose hydrolysis is dependent on lignin content: evidence from substrate structural features and protein adsorption. ACS Sustainable Chem Eng 4:6668–6679. https://doi.org/10.1021/acssuschemeng.6b01540

    Article  CAS  Google Scholar 

  9. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43:124–129. https://doi.org/10.1016/j.enzmictec.2007.11.006

    Article  CAS  Google Scholar 

  10. Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenerg Res 2:153–164. https://doi.org/10.1007/s12155-009-9041-2

    Article  Google Scholar 

  11. Meng X, Wells T, Sun Q, Huang F, Ragauskas A (2015) Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem 17:4239–4246. https://doi.org/10.1039/c5gc00689a

    Article  CAS  Google Scholar 

  12. Ma J, Zhang X, Zhou X, Xu F (2014) Revealing the changes in topochemical characteristics of poplar cell wall during hydrothermal pretreatment. Bioenerg Res 7:1358–1368. https://doi.org/10.1007/s12155-014-9472-2

    Article  Google Scholar 

  13. Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6:405–415. https://doi.org/10.1007/s12155-012-9276-1

    Article  CAS  Google Scholar 

  14. Sun SF, Yang HY, Yang J, Shi ZJ (2022) The effect of alkaline extraction of hemicellulose on cocksfoot grass enzymatic hydrolysis recalcitrance. Ind Crops Prod 178:114654. https://doi.org/10.1016/j.indcrop.2022.114654

    Article  CAS  Google Scholar 

  15. Wang R, Yue J, Jiang J, Li J, Zhao J, Xia H, Wang K, Xu J (2021) Hydrothermal CO2-assisted pretreatment of wheat straw for hemicellulose degradation followed with enzymatic hydrolysis for glucose production. Waste Biomass Valor 12:1483–1492. https://doi.org/10.1007/s12649-020-01103-4

    Article  CAS  Google Scholar 

  16. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630. https://doi.org/10.1016/j.biortech.2010.06.137

    Article  CAS  PubMed  Google Scholar 

  17. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213. https://doi.org/10.1016/j.biortech.2008.11.057

    Article  CAS  PubMed  Google Scholar 

  18. Várnai A, Huikko L, Pere J, Siika-Aho M, Viikari L (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102:9096–9104. https://doi.org/10.1016/j.biortech.2011.06.059

    Article  CAS  PubMed  Google Scholar 

  19. Shen L, Wang C, Chen J (2017) Photometric determination of the activity of cellulase and xylanase via measurement of formation of gold nanoparticles. Microchim Acta 184:163–168. https://doi.org/10.1007/s00604-016-1979-0

    Article  CAS  Google Scholar 

  20. Wang Q, Wang Z, Shen F, Hu J, Sun F, Lin L, Yang G, Zhang Y, Deng S (2014) Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresour Technol 166:420–428. https://doi.org/10.1016/j.biortech.2014.05.088

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y (2018) Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 8:12714–12723. https://doi.org/10.1039/c8ra00764k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57:6305–6317. https://doi.org/10.1021/jf900986b

    Article  CAS  PubMed  Google Scholar 

  23. Ibáñez AB, Bauer S (2014) Downscaled method using glass microfiber filters for the determination of Klason lignin and structural carbohydrates. Biomass Bioenergy 68:75–81. https://doi.org/10.1016/j.biombioe.2014.06.013

    Article  CAS  Google Scholar 

  24. Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113:1213–1224. https://doi.org/10.1002/bit.25903

    Article  CAS  PubMed  Google Scholar 

  25. Yoo CG, Li M, Meng X, Pu Y, Ragauskas AJ (2017) Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chem 19:2006–2016. https://doi.org/10.1039/c6gc03627a

    Article  CAS  Google Scholar 

  26. Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204. https://doi.org/10.1016/j.carbpol.2004.02.002

    Article  CAS  Google Scholar 

  27. Morrison IM (1974) Changes in the hemicellulosic polysaccharides of rye-grass with increasing maturity. Carbohydr Res 36:45–51. https://doi.org/10.1016/S0008-6215(00)81991-6

    Article  CAS  PubMed  Google Scholar 

  28. Sun JX, Sun XF, Sun RC, Fowler P, Baird MS (2003) Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J Agric Food Chem 51:6719–6725. https://doi.org/10.1021/jf034633j

    Article  CAS  PubMed  Google Scholar 

  29. Sun RC, Fang JM, Goodwin A, Lawther JM, Bolton AJ (1998) Fractionation and characterization of polysaccharides from abaca fibre. Carbohydr Polym 37:351–359. https://doi.org/10.1016/S0144-8617(98)00046-0

    Article  CAS  Google Scholar 

  30. Chaikumpollert O, Methacanon P, Suchiva K (2004) Structural elucidation of hemicelluloses from Vetiver grass. Carbohydr Polym 57:191–196. https://doi.org/10.1016/j.carbpol.2004.04.011

    Article  CAS  Google Scholar 

  31. Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans. J Cereal Sci 16:53–67. https://doi.org/10.1016/S0733-5210(09)80079-9

    Article  CAS  Google Scholar 

  32. Sun R, Lawther JM, Banks WB (1996) Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr Polym 29:325–331. https://doi.org/10.1016/S0144-8617(96)00018-5

    Article  CAS  Google Scholar 

  33. Gupta SK, Madan RN, Bansal MC (1987) Chemical composition of pinus caribaea hemicellulose. Tappi J 70:113–114. https://doi.org/10.5555/19860612224

    Article  CAS  Google Scholar 

  34. Schooneveld-Bergmans MEF, Beldman G, Voragen AGJ (1999) Structural features of (Glucurono)arabinoxylans extracted from wheat bran by barium hydroxide. J Cereal Sci 29:63–75. https://doi.org/10.1006/jcrs.1998.0222

    Article  CAS  Google Scholar 

  35. Delcour JA, Van Win H, Grobet PJ (1999) Distribution and structural variation of arabinoxylans in common wheat mill streams. J Agric Food Chem 47:271–275. https://doi.org/10.1021/jf9805294

    Article  CAS  PubMed  Google Scholar 

  36. Xu F, Sun JX, Liu CF, Sun RC (2006) Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr Res 341:253–261. https://doi.org/10.1016/j.carres.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  37. Rao MS, Muralikrishna G (2004) Structural analysis of arabinoxylans isolated from native and malted finger millet (Eleusine coracana, ragi). Carbohydr Res 339:2457–2463. https://doi.org/10.1016/j.carres.2004.07.005

    Article  CAS  Google Scholar 

  38. Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohydr Polym 43:367–374. https://doi.org/10.1016/S0144-8617(00)00181-8

    Article  CAS  Google Scholar 

  39. Imamura T, Watanabe T, Kuwahara M, Koshijima T (1994) Ester linkages between lignin and glucuronic acid in lignin-carbohydrate complexes from Fagus crenata. Phytochemistry 37:1165. https://doi.org/10.1016/S0031-9422(00)89551-5

    Article  CAS  PubMed  Google Scholar 

  40. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48. https://doi.org/10.1016/0144-8617(95)00077-1

    Article  CAS  Google Scholar 

  41. Linder Å, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19:5072–5077. https://doi.org/10.1021/la0341355

    Article  CAS  Google Scholar 

  42. Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12. https://doi.org/10.1016/j.biortech.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  43. Qing Q, Wyman CE (2011) Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresour Technol 102:1359–1366. https://doi.org/10.1016/j.biortech.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  44. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617. https://doi.org/10.1002/bit.20750

    Article  CAS  PubMed  Google Scholar 

  45. Mes-Hartree M, Saddler JN (1983) The nature of inhibitory materials present in pretreated lignocellulosic substrates which inhibit the enzymatic hydrolysis of cellulose. Biotechnol Lett 5:531–536. https://doi.org/10.1007/BF01184944

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 22078308 and 22261132515), Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology (No. 2022HYTP018), Innovation Leadership Program in Sciences and Technologies for Central Plains Talent Plan (No. 214200510009), Program for Science & Technology Innovative Research Team in the University of Henan Province (No. 22IRTSTHN007), Key Program of Henan Provincial Science and Technology R&D Plan Joint Fund for Cultivation of Superior Disciplines (No. 222301420008), Innovation Leadership Program in Sciences and Technologies for Zhengzhou Talent Gathering Plan, Innovation Leadership Program in Sciences and Technologies and Local Outstanding Talents for Zhengzhou Talent Gathering Plan (No. 20180400042), Program of Processing and Efficient Utilization of Biomass Resources of Henan Center for Outstanding Overseas Scientists (No. GZS2022007).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jingliang Xu, Wenlong Xiong; methodology: Jingliang Xu, Wenlong Xiong, Zhanqiang Yan; investigation: Jingliang Xu, Wenlong Xiong, Zhanqiang Yan, Md Asraful Alam; supervision: Jingliang Xu, Zili Zhan; writing—original draft: Zhanqiang Yan, Jinfeng Li; writing—review and editing: Jingliang Xu, Wenlong Xiong, Md Asraful Alam, Shen Zhang; funding: Jingliang Xu, Wenlong Xiong.

Corresponding authors

Correspondence to Wenlong Xiong or Jingliang Xu.

Ethics declarations

Ethics Approval

This article does not contain any studies with humans or animals performed by any of the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Alam, M.A., Li, J. et al. Effect of Hemicelluloses Fractionated by Graded Ethanol Precipitation from Corn Stover on the Enzymatic Hydrolysis of Lignocellulosic Biomass. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10745-4

Keywords

Navigation