Skip to main content
Log in

Technology Advances in the Bioethanol Production from Eucalyptus Wood Biomass

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Year after year, there are alarming data concerning the excessive release of greenhouse gases into the atmosphere, especially CO2 from the burning of fossil fuels. In this context, the development of renewable energy sources has evolved considerably, mainly due to the incentive use of biofuels, such as bioethanol. The second-generation bioethanol production from lignocellulosic biomasses has interesting potential to meet this energy demand. The Eucalyptus tree stands as a primary example of cultivated hardwoods, owing to its lignocellulosic structure and the biomass residues generated during its processing, where these attributes make it a significant candidate for the production of fuels. The industrial potential of these materials can be explored in the fractionation of their components to reduce their recalcitrance due to the triad formed by cellulose, hemicellulose, and lignin, for further processing and obtaining the products of interest. This paper comprehensively gathers the current technological progress employed for processing Eucalyptus wood biomasses for second-generation bioethanol production. Discussion regarding their chemical composition, the main forms of pretreatments that are being applied, and ways to minimize the generation of fermentative inhibitors during these processes is addressed. Finally, recent researches focused on Eucalyptus biomass-based bioethanol production and techno-economic considerations are discussed. The feasibility of the process is closely tied to the comprehensive utilization of products derived from this biomass. While production appears relatively effective at the laboratory scale, further research is required to develop a cost-effective process that fully harnesses the potential of the biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data analyzed during this study are included in this published article.

References

  1. Sengupta S, Bhattacharya D, Mukhopadhyay M (2020) Downstream processing of biofuel. In: Kuila A, Sharma V (eds) Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass, 1st edn. Elsevier, Amsterdam, pp 47–62

    Chapter  Google Scholar 

  2. Gonçalves T dos S, Oro CED, Wancura JHC, et al (2023) Challenges for energy guidelines in crop-based liquid biofuels development in Brazil. Next Sustain 100002. https://doi.org/10.1016/j.nxsust.2023.100002

  3. Friedlingstein P, O’Sullivan M, Jones MW et al (2022) Global Carbon Budget 2022. Earth Syst Sci Data 14:4811–4900. https://doi.org/10.5194/essd-14-4811-2022

    Article  Google Scholar 

  4. Romaní et al (2019) Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind Crops Prod 132:327–335. https://doi.org/10.1016/j.indcrop.2019.02.040

    Article  CAS  Google Scholar 

  5. Jayakumar M, Gindaba GT, Gebeyehu KB et al (2023) Bioethanol production from agricultural residues as lignocellulosic biomass feedstock’s waste valorization approach: A comprehensive review. Sci Total Environ 879:163158. https://doi.org/10.1016/j.scitotenv.2023.163158

    Article  CAS  PubMed  Google Scholar 

  6. Precedence Research Pvt. Ltd. (2022) Ethanol market size. https://www.precedenceresearch.com/ethanol-market. Accessed 11 Nov 2023

  7. Organization for Economic Co-operation and Development (2023) OECD Agricultural Outlook 2021–2030. https://doi.org/10.1787/19428846-en. Accessed 8 Nov 2023

  8. Kumar B, Bhardwaj N, Agrawal K, et al (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process Technol 199 https://doi.org/10.1016/j.fuproc.2019.106244

  9. Xia J, Yang Y, Liu CG et al (2019) Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production. Trends Biotechnol 37:960–972. https://doi.org/10.1016/j.tibtech.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Penín L, López M, Santos V et al (2020) Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. Bioresour Technol 311:123528. https://doi.org/10.1016/j.biortech.2020.123528

    Article  CAS  PubMed  Google Scholar 

  11. Elli EF, Sentelhas PC, Bender FD (2020) Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. For Ecol Manage 474:118365. https://doi.org/10.1016/j.foreco.2020.118365

    Article  Google Scholar 

  12. Cedeno FRP, de Siqueira BB, Gabriel Solorzano Chavez E et al (2022) Recovery of cellulose and lignin from Eucalyptus by-product and assessment of cellulose enzymatic hydrolysis. Renew Energy 193:807–820. https://doi.org/10.1016/j.renene.2022.05.027

    Article  CAS  Google Scholar 

  13. Nogueira GP, McManus MC, Leak DJ et al (2021) Are eucalyptus harvest residues a truly burden-free biomass source for bioenergy? A deeper look into biorefinery process design and Life Cycle Assessment. J Clean Prod 299:126956. https://doi.org/10.1016/j.jclepro.2021.126956

    Article  CAS  Google Scholar 

  14. Lourenço A, Araújo S, Gominho J, Evtuguin D (2020) Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood. Polymers (Basel) 12:2831. https://doi.org/10.3390/polym12122831

    Article  CAS  PubMed  Google Scholar 

  15. Hutapea FJ, Weston CJ, Mendham D, Volkova L (2023) Sustainable management of Eucalyptus pellita plantations: A review. For Ecol Manage 537:120941. https://doi.org/10.1016/j.foreco.2023.120941

    Article  Google Scholar 

  16. Cornut I, Le Maire G, Laclau J-P et al (2021) Potassium limitation of wood productivity: A review of elementary processes and ways forward to modelling illustrated by Eucalyptus plantations. For Ecol Manage 494:119275. https://doi.org/10.1016/j.foreco.2021.119275

    Article  Google Scholar 

  17. Dlamini LN, Pipatwattanakul D, Maelim S (2017) Growth variation and heritability in a second-generation Eucalyptus urophylla progeny test at Lad Krating Plantation, Chachoengsao province, Thailand. Agric Nat Resour 51:158–162. https://doi.org/10.1016/j.anres.2016.12.005

    Article  Google Scholar 

  18. Pupin S, Sebbenn AM, Cambuim J et al (2019) Effects of pollen contamination and non-random mating on inbreeding and outbreeding depression in a seedling seed orchard of Eucalyptus urophylla. For Ecol Manage 437:272–281. https://doi.org/10.1016/j.foreco.2019.01.050

    Article  Google Scholar 

  19. Asensio V, Domec J, Nouvellon Y, et al (2020) Potassium fertilization increases hydraulic redistribution and water use efficiency for stemwood production in Eucalyptus grandis plantations. Environ Exp Bot 104085. https://doi.org/10.1016/j.envexpbot.2020.104085

  20. Pagel CL, Lenner R, Wessels CB (2020) Investigation into material resistance factors and properties of young, engineered Eucalyptus grandis timber. Constr Build Mater 230:117059. https://doi.org/10.1016/j.conbuildmat.2019.117059

    Article  Google Scholar 

  21. Guidetti Zagatto MR, de Araújo P, Pereira A, José de Souza A et al (2019) Acacia mangium increases the mesofauna density and diversity in the litter layer in Eucalyptus grandis plantations. Eur J Soil Biol 94:103100. https://doi.org/10.1016/j.ejsobi.2019.103100

    Article  Google Scholar 

  22. Miranda AC, da Silva PHM, Moraes MLT et al (2019) Investigating the origin and genetic diversity of improved Eucalyptus grandis populations in Brazil. For Ecol Manage 448:130–138. https://doi.org/10.1016/j.foreco.2019.05.071

    Article  Google Scholar 

  23. Sartori CJ, Mota GS, Miranda I et al (2019) Tannin extraction and characterization of polar extracts from the barks of two Eucalyptus urophylla hybrids. BioRes 13:4820–4831. https://doi.org/10.15376/biores.13.3.4820-4831

    Article  CAS  Google Scholar 

  24. Neiva D, Fernandes L, Araújo S et al (2015) Chemical composition and kraft pulping potential of 12 eucalypt species. Ind Crops Prod 66:89–95. https://doi.org/10.1016/j.indcrop.2014.12.016

    Article  CAS  Google Scholar 

  25. Liao Y, de Beeck BO, Thielemans K et al (2020) The role of pretreatment in the catalytic valorization of cellulose. Mol Catal 487:110883. https://doi.org/10.1016/j.mcat.2020.110883

    Article  CAS  Google Scholar 

  26. Zabot GL, Abaide ER, Tres MV, Mazutti MA (2019) Subcritical hydrolysis contribution in the holistic biorefinery concept: Obtaining bioproducts and biofuels from renewable natural resources for a novel bioeconomy. In: Hosseini M (ed) Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts. Elsevier, Amsterdam, pp 35–57

    Chapter  Google Scholar 

  27. Liu CG, Xiao Y, Xia XX et al (2019) Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504

    Article  CAS  PubMed  Google Scholar 

  28. Romaní A, Rocha CMR, Michelin M, et al (2020) Valorization of lignocellulosic-based wastes. Curr Dev Biotechnol Bioeng 383–410. https://doi.org/10.1016/b978-0-444-64321-6.00020-3

  29. Xiao MZ, Chen WJ, Cao XF et al (2020) Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus. Carbohydr Polym 238:116212. https://doi.org/10.1016/j.carbpol.2020.116212

    Article  CAS  PubMed  Google Scholar 

  30. Selvi Gökkaya D, Sert M, Sağlam M, et al (2020) Hydrothermal gasification of the isolated hemicellulose and sawdust of the white poplar (Populus alba L.). J Supercrit Fluids 162 https://doi.org/10.1016/j.supflu.2020.104846

  31. Hu L, Peng H, Xia Q et al (2020) Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo. J Mol Struct 1210:128067. https://doi.org/10.1016/j.molstruc.2020.128067

    Article  CAS  Google Scholar 

  32. Rawal TB, Zahran M, Dhital B et al (2020) The relation between lignin sequence and its 3D structure. Biochim Biophys Acta - Gen Subj 1864:129547. https://doi.org/10.1016/j.bbagen.2020.129547

    Article  CAS  PubMed  Google Scholar 

  33. Tian Q, Xu P, Huang D et al (2023) The driving force of biomass value-addition: Selective catalytic depolymerization of lignin to high-value chemicals. J Environ Chem Eng 11:109719. https://doi.org/10.1016/j.jece.2023.109719

    Article  CAS  Google Scholar 

  34. Arora A, Nandal P, Singh J, Verma ML (2020) Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Mater Sci Energy Technol 3:308–318. https://doi.org/10.1016/j.mset.2019.12.003

    Article  CAS  Google Scholar 

  35. Houfani AA, Anders N, Spiess AC, et al (2020) Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biom Bioenergy 134:. https://doi.org/10.1016/j.biombioe.2020.105481

  36. Reina L, Botto E, Mantero C et al (2016) Production of second generation ethanol using Eucalyptus dunnii bark residues and ionic liquid pretreatment. Biom Bioenergy 93:116–121. https://doi.org/10.1016/j.biombioe.2016.06.023

    Article  CAS  Google Scholar 

  37. dos Santos PSB, de Cademartori PHG, Prado R et al (2014) Composition and structure of organosolv lignins from four eucalypt species. Wood Sci Technol 48:873–885. https://doi.org/10.1007/s00226-014-0646-z

    Article  CAS  Google Scholar 

  38. Lima L, Miranda I, Knapic S et al (2018) Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. Eur J Wood Wood Prod 76:783–792. https://doi.org/10.1007/s00107-017-1247-y

    Article  CAS  Google Scholar 

  39. de Sousa PAR, Furtado LT, Lima Neto JL, et al (2019) Evaluation of the Adsorption Capacity of Banana Peel in the Removal of Emerging Contaminants present in Aqueous Media – Study based on Factorial Design. Brazilian J Anal Chem 6:. https://doi.org/10.30744/brjac.2179-3425.AR.119-2018

  40. Rigual V, Ovejero-Pérez A, Rivas S et al (2020) Protic, Aprotic, and Choline-Derived Ionic Liquids: Toward Enhancing the Accessibility of Hardwood and Softwood. ACS Sustain Chem Eng 8:1362–1370. https://doi.org/10.1021/acssuschemeng.9b04443

    Article  CAS  Google Scholar 

  41. Ohashi Y, Watanabe T (2018) Catalytic Performance of Food Additives Alum, Flocculating Agent, Al(SO4)3, AlCl3, and Other Lewis Acids in Microwave Solvolysis of Hardwoods and Recalcitrant Softwood for Biorefinery. ACS Omega 3:16271–16280. https://doi.org/10.1021/acsomega.8b01454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhan N, Shang X, Wang Z et al (2022) Screening cellulose synthesis related genes of EgrEXP and EgrHEX in Eucalyptus grandis. Gene 824:146396. https://doi.org/10.1016/j.gene.2022.146396

    Article  CAS  PubMed  Google Scholar 

  43. Nadaleti WC, Borges dos Santos G, Lourenço VA (2020) The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis. Int J Hydrogen Energy 45:1373–1384. https://doi.org/10.1016/j.ijhydene.2019.08.199

    Article  CAS  Google Scholar 

  44. Wang B, Shen X-J, Wen J-L et al (2017) Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood. Int J Biol Macromol 97:447–459. https://doi.org/10.1016/j.ijbiomac.2017.01.069

    Article  CAS  PubMed  Google Scholar 

  45. Penín L, Santos V, del Río JC, Parajó JC (2019) Assesment on the chemical fractionation of Eucalyptus nitens wood: Characterization of the products derived from the structural components. Bioresour Technol 281:269–276. https://doi.org/10.1016/j.biortech.2019.02.098

    Article  CAS  PubMed  Google Scholar 

  46. Trevorah RM, Huynh T, Vancov T, Othman MZ (2018) Bioethanol potential of Eucalyptus obliqua sawdust using gamma-valerolactone fractionation. Bioresour Technol 250:673–682. https://doi.org/10.1016/j.biortech.2017.11.084

    Article  CAS  PubMed  Google Scholar 

  47. Trevorah R, Harding G, Othman MZ (2020) Rapid fractionation of various lignocellulosic biomass using gamma-valerolactone. Bioresour Technol Reports 11:100497. https://doi.org/10.1016/j.biteb.2020.100497

    Article  Google Scholar 

  48. Pereira GCQ, Braz DS, Hamaguchi M et al (2018) Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill. Bioresour Technol 250:345–354. https://doi.org/10.1016/j.biortech.2017.11.022

    Article  CAS  PubMed  Google Scholar 

  49. Rijo B, Soares Dias AP, Ramos M, Ameixa M (2022) Valorization of forest waste biomass by catalyzed pyrolysis. Energy 243:122766. https://doi.org/10.1016/j.energy.2021.122766

    Article  CAS  Google Scholar 

  50. Arias A, Feijoo G, Moreira MT (2023) Process modelling and environmental assessment on the valorization of lignocellulosic waste to antimicrobials. Food Bioprod Process 137:113–123. https://doi.org/10.1016/j.fbp.2022.11.008

    Article  CAS  Google Scholar 

  51. Gomes DG, Michelin M, Romaní A et al (2021) Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark residues using hydrothermal treatment. Fuel 285:119265. https://doi.org/10.1016/j.fuel.2020.119265

    Article  CAS  Google Scholar 

  52. Yang J, Huang Y, Yang W et al (2024) Efficient production of low molecular weight lignin from eucalyptus wood through methanol-alkali system. Ind Crops Prod 207:117728. https://doi.org/10.1016/j.indcrop.2023.117728

    Article  CAS  Google Scholar 

  53. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renew Energy 114:1427–1441. https://doi.org/10.1016/j.renene.2017.06.050

    Article  CAS  Google Scholar 

  54. Saratale GD, Saratale RG, Varjani S et al (2020) Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind Crops Prod 150:112425. https://doi.org/10.1016/j.indcrop.2020.112425

    Article  CAS  Google Scholar 

  55. Trigui K, De Loubens C, Magnin A et al (2020) Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency. Carbohydr Polym 240:116342. https://doi.org/10.1016/j.carbpol.2020.116342

    Article  CAS  PubMed  Google Scholar 

  56. Sun L-L, Yue Z, Sun S-C et al (2023) Microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system for one-pot fractionation and valorization of Eucalyptus biomass. Bioresour Technol 369:128392. https://doi.org/10.1016/j.biortech.2022.128392

    Article  CAS  PubMed  Google Scholar 

  57. Xu J-Y, Yuan T-Q, Xiao L, Sun R-C (2018) Effect of ultrasonic time on the structural and physico-chemical properties of hemicelluloses from Eucalyptus grandis. Carbohydr Polym 195:114–119. https://doi.org/10.1016/j.carbpol.2018.04.067

    Article  CAS  PubMed  Google Scholar 

  58. Ferreira RR, Souza AG, Nunes LL et al (2020) Use of ball mill to prepare nanocellulose from eucalyptus biomass: Challenges and process optimization by combined method. Mater Today Commun 22:100755. https://doi.org/10.1016/j.mtcomm.2019.100755

    Article  CAS  Google Scholar 

  59. Ma L, He M, Fu P et al (2020) Adsorption of volatile organic compounds on modified spherical activated carbon in a new cyclonic fluidized bed. Sep Purif Technol 235:116146. https://doi.org/10.1016/j.seppur.2019.116146

    Article  CAS  Google Scholar 

  60. Xia F, Liu H, Lu J et al (2019) An integrated biorefinery process to produce butanol and pulp from corn straw. Ind Crops Prod 140:111648. https://doi.org/10.1016/j.indcrop.2019.111648

    Article  CAS  Google Scholar 

  61. Scapini T, dos Santos MSN, Bonatto C et al (2021) Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresour Technol 342:126033. https://doi.org/10.1016/j.biortech.2021.126033

    Article  CAS  PubMed  Google Scholar 

  62. Rezania S, Oryani B, Cho J et al (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 199:117457. https://doi.org/10.1016/j.energy.2020.117457

    Article  CAS  Google Scholar 

  63. Yang B, Zhang S, Hu H et al (2020) Separation of hemicellulose and cellulose from wood pulp using a γ-valerolactone (GVL)/water mixture. Sep Purif Technol 248:117071. https://doi.org/10.1016/j.seppur.2020.117071

    Article  CAS  Google Scholar 

  64. Amoah J, Ogura K, Schmetz Q et al (2019) Co-fermentation of xylose and glucose from ionic liquid pretreated sugar cane bagasse for bioethanol production using engineered xylose assimilating yeast. Biom Bioenergy 128:105283. https://doi.org/10.1016/j.biombioe.2019.105283

    Article  CAS  Google Scholar 

  65. Ramakoti B, Dhanagopal H, Deepa K et al (2019) Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization. Bioresour Technol Reports 7:100293. https://doi.org/10.1016/j.biteb.2019.100293

    Article  Google Scholar 

  66. Xu X, Wang K, Zhou Y et al (2023) Comparison of organosolv pretreatment of masson pine with different solvents in promoting delignification and enzymatic hydrolysis efficiency. Fuel 338:127361. https://doi.org/10.1016/j.fuel.2022.127361

    Article  CAS  Google Scholar 

  67. Mupondwa E, Li X, Tabil L et al (2017) Status of Canada’s lignocellulosic ethanol: Part I: Pretreatment technologies. Renew Sustain Energy Rev 72:178–190. https://doi.org/10.1016/j.rser.2017.01.039

    Article  CAS  Google Scholar 

  68. Hou X, Wang Z, Sun J et al (2019) A microwave-assisted aqueous ionic liquid pretreatment to enhance enzymatic hydrolysis of Eucalyptus and its mechanism. Bioresour Technol 272:99–104. https://doi.org/10.1016/j.biortech.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  69. Liu B, Li J, Liu L et al (2022) Efficient separation of eucalyptus hemicellulose and improvement of the stability of the remaining components by 1-amino-2-naphthol-4-sulfonic acid pretreatment. Ind Crops Prod 187:115406. https://doi.org/10.1016/j.indcrop.2022.115406

    Article  CAS  Google Scholar 

  70. Wei W, Zhang H, Jin Y (2019) Comparison of microwave-assisted zinc chloride hydrate and alkali pretreatments for enhancing eucalyptus enzymatic saccharification. Energy Convers Manag 186:42–50. https://doi.org/10.1016/j.enconman.2019.02.054

    Article  CAS  Google Scholar 

  71. Cebreiros F, Clavijo L, Boix E et al (2020) Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments. Renew Energy 149:115–127. https://doi.org/10.1016/j.renene.2019.12.024

    Article  CAS  Google Scholar 

  72. Fitria RH, Fransen SC et al (2019) Selecting winter wheat straw for cellulosic ethanol production in the Pacific Northwest, U.S.A. Biom Bioenergy 123:59–69. https://doi.org/10.1016/j.biombioe.2019.02.012

    Article  CAS  Google Scholar 

  73. Rodionova MV, Bozieva AM, Zharmukhamedov SK et al (2022) A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int J Hydrogen Energy 47:1481–1498. https://doi.org/10.1016/j.ijhydene.2021.10.122

    Article  CAS  Google Scholar 

  74. Soares JF, Confortin TC, Todero I, et al (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects. Renew Sustain Energy Rev 117:. https://doi.org/10.1016/j.rser.2019.109484

  75. Moreira BP, Draszewski CP, Rosa NC et al (2023) Integrated rice bran processing by supercritical CO2 extraction and subcritical water hydrolysis to obtain oil, fermentable sugars, and platform chemicals. J Supercrit Fluids 192:105786. https://doi.org/10.1016/j.supflu.2022.105786

    Article  CAS  Google Scholar 

  76. Bonfiglio F, Cagno M, Yamakawa CK, Mussatto SI (2021) Production of xylitol and carotenoids from switchgrass and Eucalyptus globulus hydrolysates obtained by intensified steam explosion pretreatment. Ind Crops Prod 170:113800. https://doi.org/10.1016/j.indcrop.2021.113800

    Article  CAS  Google Scholar 

  77. Thoresen M, Malgas S, Gandla ML et al (2021) The effects of chemical and structural factors on the enzymatic saccharification of Eucalyptus sp. samples pre-treated by various technologies. Ind Crops Prod 166:113449. https://doi.org/10.1016/j.indcrop.2021.113449

    Article  CAS  Google Scholar 

  78. Jiang Y, Feng Y, Lei B, Zhong H (2020) Impact mechanisms of supercritical CO2–ethanol–water on extraction behavior and chemical structure of eucalyptus lignin. Int J Biol Macromol 161:1506–1515. https://doi.org/10.1016/j.ijbiomac.2020.07.318

    Article  CAS  PubMed  Google Scholar 

  79. García-Torreiro M, López-Abelairas M, Lu-Chau TA, Lema JM (2016) Fungal pretreatment of agricultural residues for bioethanol production. Ind Crops Prod 89:486–492. https://doi.org/10.1016/j.indcrop.2016.05.036

    Article  CAS  Google Scholar 

  80. Lu H, Zhang X, Wu A et al (2017) Comparison of Dilute Acid, Alkali, and Biological Pretreatments for Reducing Sugar Production from Eucalyptus. BioRes 12:6353–6365

    Article  CAS  Google Scholar 

  81. Schneider WDH, Fontana RC, Baudel HM et al (2020) Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energy 262:114493. https://doi.org/10.1016/j.apenergy.2020.114493

    Article  CAS  Google Scholar 

  82. Raj A, Kumar S, Singh SK, Prakash J (2018) Production and purification of xylanase from alkaliphilic Bacillus licheniformis and its pretreatment of eucalyptus kraft pulp. Biocatal Agric Biotechnol 15:199–209. https://doi.org/10.1016/j.bcab.2018.06.018

    Article  Google Scholar 

  83. Inalbon MC, Mocchiutti P, Zanuttini MA et al (2015) Applying Ligninolytic Fungi on Eucalyptus grandis Wood for Pulping Pretreatment or Fractionation. Procedia Mater Sci 8:1099–1107. https://doi.org/10.1016/j.mspro.2015.04.173

    Article  CAS  Google Scholar 

  84. Zhao L, Sun Z-F, Zhang C-C et al (2022) Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresour Technol 343:126123. https://doi.org/10.1016/j.biortech.2021.126123

    Article  CAS  PubMed  Google Scholar 

  85. Singhania RR, Patel AK, Singh A et al (2022) Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. Bioresour Technol 354:127153. https://doi.org/10.1016/j.biortech.2022.127153

    Article  CAS  PubMed  Google Scholar 

  86. Ahmed SF, Mofijur M, Chowdhury SN et al (2022) Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production. Fuel 318:123618. https://doi.org/10.1016/j.fuel.2022.123618

    Article  CAS  Google Scholar 

  87. Malik K, Sharma P, Yang Y et al (2022) Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches. Ind Crops Prod 188:115569. https://doi.org/10.1016/j.indcrop.2022.115569

    Article  CAS  Google Scholar 

  88. Liu H, Zhang J, Yuan J et al (2019) Omics-based analyses revealed metabolic responses of Clostridium acetobutylicum to lignocellulose-derived inhibitors furfural, formic acid and phenol stress for butanol fermentation. Biotechnol Biofuels 12:101. https://doi.org/10.1186/s13068-019-1440-9

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu B, Liu L, Deng B et al (2022) Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int J Biol Macromol 222:1400–1413. https://doi.org/10.1016/j.ijbiomac.2022.09.270

    Article  CAS  PubMed  Google Scholar 

  90. Halder P, Kundu S, Patel S et al (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sustain Energy Rev 105:268–292. https://doi.org/10.1016/j.rser.2019.01.052

    Article  CAS  Google Scholar 

  91. Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresour Technol 258:302–309. https://doi.org/10.1016/j.biortech.2018.03.064

    Article  CAS  PubMed  Google Scholar 

  92. Kumar V, Yadav SK, Kumar J, Ahluwalia V (2020) A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour Technol 299:122633. https://doi.org/10.1016/j.biortech.2019.122633

    Article  CAS  PubMed  Google Scholar 

  93. Bhatia SK, Jagtap SS, Bedekar AA et al (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724

    Article  CAS  PubMed  Google Scholar 

  94. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415. https://doi.org/10.1016/j.enzmictec.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  95. Pattrick CA, Webb JP, Green J et al (2019) Proteomic Profiling. Transcription Factor Modeling, and Genomics of Evolved Tolerant Strains Elucidate Mechanisms of Vanillin Toxicity in Escherichia coli. mSystems 4:e00163-19. https://doi.org/10.1128/mSystems.00163-19

    Article  PubMed  Google Scholar 

  96. Ding M-Z, Wang X, Yang Y, Yuan Y-J (2011) Metabolomic Study of Interactive Effects of Phenol, Furfural, and Acetic Acid on Saccharomyces cerevisiae. Omi A J Integr Biol 15:647–653. https://doi.org/10.1089/omi.2011.0003

    Article  CAS  Google Scholar 

  97. Tan Z, Li X, Yang C et al (2021) Inhibition and disinhibition of 5-hydroxymethylfurfural in anaerobic fermentation: A review. Chem Eng J 424:130560. https://doi.org/10.1016/j.cej.2021.130560

    Article  CAS  Google Scholar 

  98. Wikandari R, Sanjaya AP, Millati R, et al (2019) Fermentation Inhibitors in Ethanol and Biogas Processes and Strategies to Counteract Their Effects. In: Pandey A, Larroche C, Dussap, C et al Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels. Elsevier, Amsterdam, pp 461–499

  99. Weiqi W, Shubin W, Liguo L (2013) Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresour Technol 128:725–730. https://doi.org/10.1016/j.biortech.2012.08.130

    Article  CAS  PubMed  Google Scholar 

  100. Landaeta R, Aroca G, Acevedo F et al (2013) Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Appl Energy 102:124–130. https://doi.org/10.1016/j.apenergy.2012.06.048

    Article  CAS  Google Scholar 

  101. Villarreal ML, Prata AMR, Felipe MG, Silva AE, JB, (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24. https://doi.org/10.1016/j.enzmictec.2005.10.032

    Article  CAS  Google Scholar 

  102. Canilha L, de Almeida e Silva JB, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem 39:1909–1912. https://doi.org/10.1016/j.procbio.2003.09.009

    Article  CAS  Google Scholar 

  103. Martín-Sampedro R, Eugenio ME, García JC et al (2012) Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biom Bioenergy 42:97–106. https://doi.org/10.1016/j.biombioe.2012.03.032

    Article  CAS  Google Scholar 

  104. Wu B, Wang Y-W, Dai Y-H et al (2021) Current status and future prospective of bio-ethanol industry in China. Renew Sustain Energy Rev 145:111079. https://doi.org/10.1016/j.rser.2021.111079

    Article  CAS  Google Scholar 

  105. Melendez JR, Mátyás B, Hena S et al (2022) Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses. Renew Sustain Energy Rev 160:112260. https://doi.org/10.1016/j.rser.2022.112260

    Article  CAS  Google Scholar 

  106. González-García S, Moreira MT, Feijoo G (2012) Environmental aspects of eucalyptus based ethanol production and use. Sci Total Environ 438:1–8. https://doi.org/10.1016/j.scitotenv.2012.07.044

    Article  CAS  PubMed  Google Scholar 

  107. Dixit Y, Yadav P, Sharma AK et al (2023) Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. Renew Sustain Energy Rev 187:113772. https://doi.org/10.1016/j.rser.2023.113772

    Article  CAS  Google Scholar 

  108. Hosseini Koupaie E, Dahadha S, Bazyar Lakeh AA et al (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. J Environ Manage 233:774–784. https://doi.org/10.1016/j.jenvman.2018.09.106

    Article  CAS  PubMed  Google Scholar 

  109. Agrawal K, Nair LG, Chaturvedi V, Verma P (2023) Designing microbial cellulases using genetic engineering approach: A promising strategy towards zero-waste cellulosic biorefinery. Biocatal Agric Biotechnol 52:102830. https://doi.org/10.1016/j.bcab.2023.102830

    Article  CAS  Google Scholar 

  110. Hans M, Kumar S, Chandel AK, Polikarpov I (2019) A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation. Process Biochem 85:125–134. https://doi.org/10.1016/j.procbio.2019.06.019

    Article  CAS  Google Scholar 

  111. Toor M, Kumar SS, Malyan SK et al (2020) An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 242:125080. https://doi.org/10.1016/j.chemosphere.2019.125080

    Article  CAS  PubMed  Google Scholar 

  112. Singh A, Singhania RR, Soam S et al (2022) Production of bioethanol from food waste: Status and perspectives. Bioresour Technol 360:127651. https://doi.org/10.1016/j.biortech.2022.127651

    Article  CAS  PubMed  Google Scholar 

  113. Sidana A, Yadav SK (2022) Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J Clean Prod 335:130286. https://doi.org/10.1016/j.jclepro.2021.130286

    Article  CAS  Google Scholar 

  114. Jamaldheen SB, Kurade MB, Basak B et al (2022) A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 346:126591. https://doi.org/10.1016/j.biortech.2021.126591

    Article  CAS  Google Scholar 

  115. Li X, Shi Y, Kong W et al (2022) Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—A review. Energy Rep 8:696–709. https://doi.org/10.1016/j.egyr.2021.12.015

    Article  Google Scholar 

  116. Zhang X, Zhou Y, Xiong W et al (2022) Co-production of xylose, lignin, and ethanol from eucalyptus through a choline chloride-formic acid pretreatment. Bioresour Technol 359:127502. https://doi.org/10.1016/j.biortech.2022.127502

    Article  CAS  PubMed  Google Scholar 

  117. Rochón E, Cabrera MN, Scutari V et al (2022) Co-production of bioethanol and xylosaccharides from steam-exploded eucalyptus sawdust using high solid loads in enzymatic hydrolysis: Effect of alkaline impregnation. Ind Crops Prod 175:114253. https://doi.org/10.1016/j.indcrop.2021.114253

    Article  CAS  Google Scholar 

  118. Bonifacino S, Resquín F, Lopretti M et al (2021) Bioethanol production using high density Eucalyptus crops in Uruguay. Heliyon 7:e06031. https://doi.org/10.1016/j.heliyon.2021.e06031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang Q, Huo D, Han X et al (2021) Improvement of fermentable sugar recovery and bioethanol production from eucalyptus wood chips with the combined pretreatment of NH4Cl impregnation and refining. Ind Crops Prod 167:113503. https://doi.org/10.1016/j.indcrop.2021.113503

    Article  CAS  Google Scholar 

  120. Cunha M, Romaní A, Carvalho M, Domingues L (2018) Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresour Technol 250:256–264. https://doi.org/10.1016/j.biortech.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  121. Li Y-J, Li H-Y, Sun S-N, Sun R-C (2019) Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renew Energy 134:228–234. https://doi.org/10.1016/j.renene.2018.11.038

    Article  CAS  Google Scholar 

  122. Amândio MST, Rocha JMS, Xavier AMRB (2023) Improving simultaneous saccharification and fermentation by pre-saccharification and high solids operation for bioethanol production from Eucalyptus globulus bark. J Environ Chem Eng 11:110763. https://doi.org/10.1016/j.jece.2023.110763

    Article  CAS  Google Scholar 

  123. Korchagin J, Bortoluzzi EC, Moterle DF et al (2019) Evidences of soil geochemistry and mineralogy changes caused by eucalyptus rhizosphere. CATENA 175:132–143. https://doi.org/10.1016/j.catena.2018.12.001

    Article  CAS  Google Scholar 

  124. Wei W, Sun C, Wang X et al (2020) Lipase-Catalyzed Synthesis of Sn-2 Palmitate: A Review. Engineering 6:406–414. https://doi.org/10.1016/j.eng.2020.02.008

    Article  CAS  Google Scholar 

  125. Alemayehu A, Melka Y (2022) Small scale eucalyptus cultivation and its socioeconomic impacts in Ethiopia: A review of practices and conditions. Trees, For People 8:100269. https://doi.org/10.1016/j.tfp.2022.100269

    Article  Google Scholar 

  126. Xu Y, Li C, Zhu Y et al (2022) The shifts in soil microbial community and association network induced by successive planting of Eucalyptus plantations. For Ecol Manage 505:119877. https://doi.org/10.1016/j.foreco.2021.119877

  127. Zhiqun T, Jian Z, Junli Y et al (2017) Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays. Chemosphere 173:307–317. https://doi.org/10.1016/j.chemosphere.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  128. Formaglio G, Krusche AV, Mareschal L et al (2023) Planting nitrogen-fixing trees in tropical Eucalyptus plantations does not increase nutrient losses through drainage. For Ecol Manage 537:120940. https://doi.org/10.1016/j.foreco.2023.120940

    Article  Google Scholar 

  129. McMahon DE, Vergütz L, Valadares SV et al (2019) Soil nutrient stocks are maintained over multiple rotations in Brazilian Eucalyptus plantations. For Ecol Manage 448:364–375. https://doi.org/10.1016/j.foreco.2019.06.027

    Article  Google Scholar 

  130. Gomes DG, Teixeira JA, Domingues L (2021) Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds. Appl Energy 303:117662. https://doi.org/10.1016/j.apenergy.2021.117662

    Article  CAS  Google Scholar 

  131. Gonzalez R, Treasure T, Phillips R et al (2011) Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II Biom Bioenergy 35:767–772. https://doi.org/10.1016/j.biombioe.2010.10.025

    Article  CAS  Google Scholar 

  132. Jonker JGG, Junginger HM, Verstegen JA et al (2016) Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Appl Energy 173:494–510. https://doi.org/10.1016/j.apenergy.2016.04.069

    Article  Google Scholar 

  133. Dornelles LB, Filho RM, Mariano AP (2021) Organosolv fractionation of eucalyptus: Economics of cellulosic ethanol and chemicals versus lignin valorization to phenols and polyols. Ind Crops Prod 173:114097. https://doi.org/10.1016/j.indcrop.2021.114097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Human Resources Program of the Brazilian Agency for Petroleum, Natural Gas and Biofuels – PRH/ANP through the Human Resources Training Program for Petroleum and Biofuels Processing (PRH 52.1) as well as CAPES (Coordination for the Improvement of Higher Education Personnel, 001) for scholarships.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the paper conception. Conceptualization of the paper was performed by Isabela de L. Valente and João H. C. Wancura. The first draft of the manuscript was written by Isabela de L. Valente, Maicon S. N. dos Santos, and Anderson J. de Freitas. The manuscript was revised and edited by Sabrina F. Lutke and João H. C. Wancura. Sabrina F. Lutke also worked on the data investigation. Fábio A. Mori was responsible by the validation and project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to João H. C. Wancura.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valente, I.d., Wancura, J.H.C., de Freitas, A.J. et al. Technology Advances in the Bioethanol Production from Eucalyptus Wood Biomass. Bioenerg. Res. 17, 769–789 (2024). https://doi.org/10.1007/s12155-023-10713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10713-4

Keywords

Navigation