Skip to main content
Log in

Bioprospecting of Ten Microalgae Species Isolated from Saline Water Lake for Evaluation of the Biodiesel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Algal bioprospecting in ecosystems leads to exploring native microalgae and the competency evaluation of economically producing lipids as biofuel or nutritional applications. In this study, ten microalgae species were screened from the saline water lake. Chlorella vulgarisChlorella sorokinianaChlamydomonas raudensisChlamydomonas hedleyiDunaliella salina, Picochlorum bazangan sp. nov.Tetraselmis bazangan sp. nov., Haematococcus lacustrisNannochloropsis oceanic, and Scenedesmus rubescens were isolated and identified using 18SrDNA and tufA markers. Biodiesel potentials were assayed by the determination of biomass productivity, biochemical components, fatty acid profile, and biodiesel properties. The results showed that the maximum biomass yield (1.22 g/L) belonged to C. vulgaris. The highest protein, carbohydrate, chlorophyll, and carotenoid content were recorded in C. vulgarisC. raudensisC. sorokiniana, and D. salina, respectively. N. oceanica accumulated high lipid content and omega-3 fractions (31.09%). However, C. hedleyi had the highest lipid productivity (11.64 g/L/day) compared to other microalgae. The best species for biodiesel production was C. vulgaris, with a specific growth rate of 0.36 day−1, lipid productivity of 7.45 g/L/day, and C16-C18 fatty acid profile of 78.3%. The microalgae C. vulgaris had appropriate biodiesel properties of low viscosity (4.49), high cetane number (55.38), and relatively low cloud point (4.98). Another choice was N. oceanic, with high lipid productivity, cetane number (59.79), oxidative stability (56.43), and low iodine value (47.11). Microalgae T. bazangan sp. nov. had a cetane number (55.24), low cloud point (4.71), and C16-C18 fatty acid profile of 82.34%. Accordingly, C. vulgarisT. bazangan sp. nov., and N. oceanic can be considered potential species for biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rafa N, Ahmed SF, Badruddin IA, Mofijur M, Kamangar S (2021) Strategies to produce -cost-effective third-generation biofuel from microalgae. Front Energy Res 9:1–11. https://doi.org/10.3389/fenrg.2021.749968

    Article  Google Scholar 

  2. Zhang S, Zhang L, Xu G, Li F, Li X (2022) A review on biodiesel production from microalgae: influencing parameters and recent advanced technologies. Front Microbiol 13:970028. https://doi.org/10.3389/fmicb.2022.970028

    Article  PubMed  PubMed Central  Google Scholar 

  3. Santhakumaran P, Kumar Kookal S, Mathew L, George Ray J (2019) Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. Bioenergy Res 12:680–693. https://doi.org/10.1007/s12155-019-09990-9

    Article  CAS  Google Scholar 

  4. Chi NTL, Duc PA, Mathimani T, Pugazhendhi A (2019) Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatal Agric Biotechnol 17:184–188. https://doi.org/10.1016/j.bcab.2018.11.011

    Article  Google Scholar 

  5. Mathimani T, Pugazhendhi A (2019) Utilization of algae for biofuel, bio-products and bioremediation. Biocatal Agric Biotechnol 17:326–330. https://doi.org/10.1016/j.bcab.2018.12.007

    Article  Google Scholar 

  6. Torkashvand M, Hasan-Zadeh A, Torkashvand A (2022) Mini review on importance, application, advantages and disadvantages of biofuels. J Mater Environ Sci 13(6):612–630

    CAS  Google Scholar 

  7. Selvarajan R, Felfoldi T, Tauber T, Sanniyasi E, Sibanda T, Tekere M (2015) Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda Lakes for biofuel production. Energies 8:7502–7521. https://doi.org/10.3390/en8077502

    Article  Google Scholar 

  8. Pereira H, Gangadhar KN, Schulze PSC, Santos T, Sousa CB, Schueler LM, Custodio L, Malcata FX, Gouveia L, Varela JCS, Barreira L (2016) Isolation of a euryhaline microalgae strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci Rep 6:56–63. https://doi.org/10.1038/srep35663

    Article  CAS  Google Scholar 

  9. Robert AA (2005) Algal culturing techniques: traditional microalgae isolation techniques. Elsevier Academic Press, USA

    Google Scholar 

  10. Yilmaz B, Asikkutlu B, Akkoz C, Atici T (2018) Molecular and morphological characterization of several cyanobacteria and chlorophyta species isolated from Lakes in Turkey. Turk J Fish Aquat Sci 19:635–643. https://doi.org/10.4194/1303-2712-v19_8_01

    Article  Google Scholar 

  11. Ferris MJ, Sheehan KB, Kuhl M, Cooksey K, Wigglesworth-Cooksey B, Harvey R, Henson JM (2005) Algal species and light microenvironment in a low-pH, geothermal microbial mat community. Appl Environ Microbiol 71:64–71. https://doi.org/10.1128/AEM.71.11.7164-7171

    Article  Google Scholar 

  12. Ye J, Mc Ginnis S, Madden TL (2006) BLAST: improvements for better sequence analysis. Nucleic Acids Res 34:6–9. https://doi.org/10.1093/nar/gkl164

    Article  CAS  Google Scholar 

  13. Tamura K, Peterson D, Stecher G, Peterson N (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hebert PDN, Cywinska A, Ball SL, De Waard JR (2003) Biological identifications through DNA barcodes. Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  15. Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgae cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, pp 269–285

    Google Scholar 

  16. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427. https://doi.org/10.1016/0003-2697(72)90094-2

    Article  CAS  PubMed  Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  18. Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z (2012) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol 121:256–262. https://doi.org/10.1016/j.biortech.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  19. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  20. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592. https://doi.org/10.1042/bst0110591

    Article  CAS  Google Scholar 

  21. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–10

    Google Scholar 

  22. Rezaei A, Cheniany M, Ahmadzadeh H, Vaezi J (2023) Evaluation of lipid composition and growth parameters of cold-adapted microalgae under different conditions. Bioenergy Res 16(2):1–13. https://doi.org/10.1007/s12155-023-10626-2

    Article  CAS  Google Scholar 

  23. Vieira HH, Bagatini IL, Guinart CM, Vieira AAH (2016) TufA gene as molecular marker for freshwater Chlorophyceae. Algae 31:155–165. https://doi.org/10.4490/algae.2016.31.4.14

    Article  CAS  Google Scholar 

  24. Gonzalez-Esquer CR, Kimberly TW, Nilusha S, Carol KC, Claire KS, Aiko T, Cheryl AK, Scott T, Taraka D (2019) Demonstration of the potential of Picochlorum soloecismus as a microalgal platform for the production of renewable fuels. Algal Res 43:1–9. https://doi.org/10.1016/j.algal.2019.101658

    Article  Google Scholar 

  25. Ntzouvaras A, Chantzistrountsiou X, Papageorgiou N, Koletti A, Adamakis ID, Zografaki ME, Marka S, Vasilakis G, Tsirigoti A, Tzovenis I et al (2023) New records of Tetraselmis sp. strains with biotechnological potential isolated from Greek coastal lagoons. Water 15:1698. https://doi.org/10.3390/w15091698

    Article  CAS  Google Scholar 

  26. Song M, Pei H, Hua W, Maa G (2013) Evaluation of the potential of 10 microalgae strains for biodiesel production. Bioresour Technol 141:245–251. https://doi.org/10.1016/jbiortech.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Zhang L, Xu G, Li F, Li X (2022) A review on biodiesel production from microalgae: influencing parameters and recent advanced technologies. Front Microbiol 13:1–20. https://doi.org/10.3389/fmicb.2022.970028

    Article  Google Scholar 

  28. Safafar H, Uldall Norregaard P, Ljubic A, Moller P, Lovstad Holdt S, Jacobsen C (2016) Enhancement of protein and pigment content in two Chlorella species cultivated on industrial process water. J Mar Sci Eng 4:1–15. https://doi.org/10.3390/jmse4040084

    Article  Google Scholar 

  29. Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgae biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119. https://doi.org/10.1007/s10811-014-0428-x

    Article  CAS  Google Scholar 

  30. Xie D, Ji X, Zhou Y, Dai J, He Y, Sun H, Guo Z, Yang Y, Zheng X, Chen B (2022) Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Bioresour Technol 349:126886. https://doi.org/10.1016/j.biortech.2022.126886

    Article  CAS  PubMed  Google Scholar 

  31. Giordano M, Palmucci M, Raven JA (2015) Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant Cell Environ 38:2313–2317. https://doi.org/10.1111/pce.12551

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Tang X, Kapoore RV, Xu C, Vaidyanathan S (2015) Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina. Energy Convers Manag 106:62–72. https://doi.org/10.1016/j.enconman.2015.09.025

    Article  CAS  Google Scholar 

  33. Guerra EM, Howlader MS, Menard SS, French WT, Gude VG (2018) Optimization of wet microalgae FAME production from Nannochloropsis sp. under the synergistic microwave and ultrasound effect. Int J Energy Res 42(5):1–16. https://doi.org/10.1002/er.3989

    Article  Google Scholar 

  34. Neag E, Stupar Z, Maicaneanu SA, Roman C (2023) Advances in biodiesel production from microalgae. Energies 16:1129. https://doi.org/10.3390/en16031129

    Article  CAS  Google Scholar 

  35. Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H (2018) Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11:277. https://doi.org/10.1186/s13068-018-1275-9

    Article  CAS  Google Scholar 

  36. Li L, Cui J, Liu Q, Ding Y, Liu J (2015) Screening and phylogenetic analysis of lipid-rich microalgae. Algal Res 11:381–386. https://doi.org/10.1016/j.algal.2015.02.028

    Article  Google Scholar 

  37. Kim ZH, Park H, Hong SJ, Lim SM, Lee CG (2016) Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioprocess Biosyst Eng 39:713–723. https://doi.org/10.1007/s00449-016-1552-6

    Article  CAS  PubMed  Google Scholar 

  38. Eldiehy KSH, Bardhan P, Borah D, Gohain M, Rather MA, Deka D, Mandal M (2022) A comprehensive review on microalgal biomass production and processing for biodiesel production. Fuel 324:124773. https://doi.org/10.1016/j.fuel.2022.124773

    Article  CAS  Google Scholar 

  39. Salla ACV, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV (2016) Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol 209:133–141. https://doi.org/10.1016/j.biortech.2016.02.069

    Article  CAS  Google Scholar 

  40. Molino A, Iovine A, Casella P, Mehariya S, Chianese S, Cerbone A, Rimauro J, Musmarra D (2018) Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int J Environ Res Public Health 15:24–36. https://doi.org/10.3390/ijerph15112436

    Article  CAS  Google Scholar 

  41. Rinawati M, Sari LA, Pursetyo KT (2020) Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. In IOP Conference Series: Earth and Environ Sci 441(1):012056. https://doi.org/10.1088/1755-1315/441/1/012056

    Article  Google Scholar 

  42. Yang Z, Gao F, Liu J, Yang J, Liu M, Ge Y (2022) Improving sedimentation and lipid production of microalgae in the photobioreactor using saline wastewater. Bioresour Technol 347:126392. https://doi.org/10.1016/j.biortech.2021.126392

    Article  CAS  PubMed  Google Scholar 

  43. Makareviciene V, Sendzikiene E (2022) Application of microalgae biomass for biodiesel fuel production. Energies 15:41–78. https://doi.org/10.3390/en15114178

    Article  CAS  Google Scholar 

  44. Sharma J, Kumar SS, Bishnoi NR, Pugazhendhi A (2018) Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq 269:712–720. https://doi.org/10.1016/j.molliq.2018.08.103

    Article  CAS  Google Scholar 

  45. Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR (2021) Microalgae as sustainable bio-factories of healthy lipids: evaluating fatty acid content and antioxidant activity. Mar Drugs 19:357. https://doi.org/10.3390/md19070357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen PL, Wang HT, Pan YF, Meng YY, Wu PC, Xue S (2016) Identification of characteristic fatty acids to quantify triacyl glycerols in microalgae. Front Plant Sci 7:162. https://doi.org/10.3389/fpls.2016.00162

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim JY, Jung JM, Jung S, Park YK, Tsang YF, Lin KYA, Choi YE, Kwon EE (2022) Biodiesel from microalgae: recent progress and key challenges. Prog Energy Combust Sci 93:101020. https://doi.org/10.1016/j.pecs.2022.101020

    Article  Google Scholar 

  48. El-Sheekh M, Abomohra AEF, Abd El-Azim M, Abou-Shanab R (2017) Effect of temperature on growth and fatty acids profile of the biodiesel producing microalgae Scenedesmus acutus. Biotechnol Agron Soc Environ 21(4):233–239. https://doi.org/10.25518/1780-4507.15291

    Article  CAS  Google Scholar 

  49. Fevzi Y, Şehmus A (2018) Biodiesel properties of microalgae (Chlorella protothecoides) oil for use in diesel engines. Int J Green Energy 15(2):1–6. https://doi.org/10.1080/15435075.2018.1529589

    Article  CAS  Google Scholar 

  50. Yaashikaa PR, Keerthana Devi M, Senthil Kumar P (2022) Algal biofuels: Technological perspective on cultivation, fuel extraction and engineering genetic pathway for enhancing productivity. Fuel 320:12–26. https://doi.org/10.1016/j.fuel.2022.123814

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ferdowsi University of Mashhad (Research No. 3/40359).

Author information

Authors and Affiliations

Authors

Contributions

S. K.: methodology, formal analysis, investigation, writing and editing, software. S. M.-S.: funding acquisition, project administration, reviewing and editing, supervision. A. B.: funding acquisition, project administration, rand editing. A. B.: investigation, writing and editing, software. N. M.: reviewing and editing.

Corresponding author

Correspondence to Saeid Malekzadeh-Shafaroudi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2013 KB)

Supplementary file2 (DOC 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravinia, S., Malekzadeh-Shafaroudi, S., Bagheri, A. et al. Bioprospecting of Ten Microalgae Species Isolated from Saline Water Lake for Evaluation of the Biodiesel Production. Bioenerg. Res. 17, 1090–1103 (2024). https://doi.org/10.1007/s12155-023-10707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10707-2

Keywords

Navigation