Skip to main content
Log in

Effect of Acid Pretreatment on the Anaerobic Codigestion of Sewage Sludge, Chicken Litter, and Sugarcane Waste (SCW) for Biogas Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In Mexico, productive activities related to poultry farming and the sugarcane industry generate large amounts of three byproducts, sewage sludge, chicken litter, and sugarcane wastes, which have high concentrations of organic matter and lignocellulosic material. Therefore, the objective of the present study was to evaluate the effect of acid pretreatment with different doses of acetic acid (2%, 3%, and 4% v/v) and exposure times of 30, 60, and 90 min on the solubilization of organic matter and biogas production in the anaerobic codigestion of a mixture of agroindustrial wastes. The biodegradability and biogas production were evaluated by anaerobic digestion for 30 days. Finally, for 90 days of semi-continuous operation, the increase in applied organic load of 1 KgVS/(m3.d) was considered with Δ1 KgVS/(m3.d) every 30 days until reaching 3 KgVS/(m3.d). Acid pretreatment with a dose of 4% acetic acid and an exposure time of 90 min improved the solubility and hydrolysis, considering the limiting stage of the anaerobic process, reducing the hydraulic retention time from 19 to 11 d to reach –Δ 38% VS, and increasing biogas yields (Ybio = 609 ± 11.7 to 1857.2 ± 7.5 Lbio/gVSrem) and methane yields (YCH4 = 426.9 ± 8.19 to 1392.9 ± 5.65 LCH4/gVSrem).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Zahan Z, Othman MZ (2019) Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Bioresour Technol 281:286–295. https://doi.org/10.1016/j.biortech.2019.01.129

    Article  CAS  PubMed  Google Scholar 

  2. Hakimi M, Shamsudin MR, Pendyala R, Aminah S, Gunny AAN (2021) Co-anaerobic digestion of chicken manure and selected additives for biogas production. IOP Conference Series: Earth Environ Sci. https://iopscience.iop.org/article/10.1088/1755-1315/765/1/012055/meta. Accessed 26 August 2022

  3. Nava-Valente N, Alvarado-Lassman A, Nativitas-Sandoval LS, Méndez-Contreras JM (2016) Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production. J Environ Sci Health A 51(5):446–453. https://doi.org/10.1080/10934529.2015.1120542

    Article  CAS  Google Scholar 

  4. Ruiz-Espinoza JE, Méndez-Contreras JM, Alvarado-Lassman A, Martínez-Delgadillo SA (2012) Effect of low temperature thermal pretreatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge. J Environ Sci Health A 47(12):1795–1802. https://doi.org/10.1080/10934529.2012.689237

    Article  CAS  Google Scholar 

  5. Musa MA, Idrus S (2021) Physical and biological treatment technologies of slaughterhouse wastewater: a review. Sustainability 13:4656. https://doi.org/10.3390/su13094656

    Article  CAS  Google Scholar 

  6. Sydney EB, de Carvalho JC, Letti LAJ, Magalhães AI Jr, Karp SG, Martinez-Burgos WJ, Soccol CR (2021) Current developments and challenges of green technologies for the valorization of liquid, solid, and gaseous wastes from sugarcane ethanol production. J Hazard Mater 404:124059. https://doi.org/10.1016/j.jhazmat.2020.124059

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Jin Y, Borrion A, Li H, Li J (2017) Effects of organic composition on mesophilic anaerobic digestion of food waste. Bioresour Technol 244:213–224. https://doi.org/10.1016/j.biortech.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  8. Principi P, König R, Cuomo M (2019) Anaerobic digestion of lignocellulosic substrates: benefits of pre-treatments. Curr Renew Energy Rep 6(3):61–70. https://doi.org/10.1007/s40518-019-00131-6

    Article  CAS  Google Scholar 

  9. Fernández-Cegrí V, Ángeles De la Rubia M, Raposo F, Borja R (2012) Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresour Technol 123:424–429. https://doi.org/10.1016/j.biortech.2012.07.111

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  11. Veluchamy C, Kalamdhad AS (2020) Screening of different thermal heating processes for increased methane production from lignocellulose waste material. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00886-9

    Article  Google Scholar 

  12. Nava-Valente N, Del Ángel-Coronel OA, Atenodoro-Alonso J, López-Escobar LA (2021) Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Convers. Biorefin. 1-14https://doi.org/10.1007/s13399-021-01529-3

  13. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 30:164–174. https://doi.org/10.1016/j.biortech.2022.127774

    Article  CAS  Google Scholar 

  14. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  15. Peng J, Abomohra AEF, Elsayed M, Zhang X, Fan Q, Ai P (2019) Compositional changes of rice straw fibers after pretreatment with diluted acetic acid: towards enhanced biomethane production. J Clean Prod 230:775–782. https://doi.org/10.1016/j.jclepro.2019.05.155

    Article  CAS  Google Scholar 

  16. Dos Santos LC, Adarme OFH, Baêta BEL, Gurgel LVA, De Aquino SF (2018) Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresour Technol 263:601–661. https://doi.org/10.1016/j.biortech.2018.05.037

    Article  CAS  PubMed  Google Scholar 

  17. Pellera FM, Gidarakos E (2017) Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manage. https://doi.org/10.1016/j.wasman.2017.04.038

    Article  Google Scholar 

  18. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–2165. https://doi.org/10.3390/ijms9091621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lizama AC, Figueiras CC, Herrera RR, Pedreguera AZ, Espinoza JER (2017) Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. Int Biodeterior Biodegradation 123:1–9. https://doi.org/10.1016/j.ibiod.2017.05.020

    Article  CAS  Google Scholar 

  20. Yang X, Wang X, Wang L (2010) Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process. Bioresour Technol 101(8):2580–2584. https://doi.org/10.1016/j.biortech.2009.10.055

    Article  CAS  PubMed  Google Scholar 

  21. López-Escobar LA, Martínez-Hernández S, Corte-Cano G, Méndez-Contreras JM (2014) Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse. J Environ Sci Health A 49(14):1710–1717. https://doi.org/10.1080/10934529.2014.951258

    Article  CAS  Google Scholar 

  22. American Public Health Association (2017) Standard methods for the examination of water and wastewater, American Water Works Association, & Water Environment Federation.

  23. Gerhard P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. ASM Press, Washington, DC

    Google Scholar 

  24. Metcalf L, Eddy HP, Tchobanoglous G (1991) Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill, New York.

  25. Miñón-Fuentes R, Aguilar-Juárez O (2019) Hydrogen production from coffee pulp by dark fermentation. Water Sci Technol 80(9):1692–1701. https://doi.org/10.2166/wst.2019.416

    Article  CAS  PubMed  Google Scholar 

  26. Charalambous P, Shin J, Shin SG, Vyrides I (2020) Anaerobic digestion of industrial dairy wastewater and cheese whey: performance of internal circulation bioreactor and laboratory batch test at pH 5–6. Renew Energy 147:1–10. https://doi.org/10.1016/j.renene.2019.08.091

    Article  CAS  Google Scholar 

  27. Cremonez PA, Teleken JG, Meier TRW, Alves HJ (2021) Two-Stage anaerobic digestion in agroindustrial waste treatment: a review. J Environ Manage 281:111854. https://doi.org/10.1016/j.jenvman.2020.111854

    Article  CAS  PubMed  Google Scholar 

  28. Saxena A, Bhardwaj M, Allen T, Kumar S, Sahney R (2017) Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents. Water Sci 31:189–197. https://doi.org/10.1016/j.wsj.2017.09.002

    Article  Google Scholar 

  29. Singh SR, Singh AP (2017) Adsorption of heavy metals from waste waters using waste biomass. Int J Eng Res Technol 1:423–428

    Google Scholar 

  30. Rasapoor M, Young B, Sarmah A, Zhuang WQ, Baroutian S (2020) Recognizing the challenges of anaerobic digestion: critical steps toward improving biogas generation. Fuel 261:116497. https://doi.org/10.1016/j.fuel.2019.116497

    Article  CAS  Google Scholar 

  31. Braun R, Brachtl E, Grasmug M (2003) Codigestion of proteinaceous industrial waste. Appl Biochem Biotechnol 109:139–153. https://doi.org/10.1385/ABAB:109:1-3:139

    Article  CAS  PubMed  Google Scholar 

  32. Ma G, Chen Y, Ndegwa P (2021) Association between methane yield and microbiota abundance in the anaerobic digestion process: a meta-regression. Renew Sust Energ Rev 135:110212. https://doi.org/10.1016/j.rser.2020.110212

    Article  CAS  Google Scholar 

  33. Srisowmeya G, Chakravarthy M, Nandhini Devi G (2020) Critical considerations in two-stage anaerobic digestion of food waste – a review. Renew Sust Energ Rev 119:10958. https://doi.org/10.1016/j.rser.2019.109587

    Article  CAS  Google Scholar 

  34. Weemaes MP, Verstraete WH (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol 73(2):83–92. https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2%3c83::AID-JCTB932%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  35. Devlin DC, Esteves SRR, Dinsdale RM, Guwy AJ (2011) The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour Technol 102(5):4076–4082. https://doi.org/10.1016/j.biortech.2010.12.043

    Article  CAS  PubMed  Google Scholar 

  36. Naran E, Toor UA, Kim DJ (2016) Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. Int Biodeterior Biodegradation 13:17–21. https://doi.org/10.1016/j.ibiod.2016.04.011

    Article  CAS  Google Scholar 

  37. Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, Vijay VK, Kumar V, Thakur IS (2020) Enhanced biogas production from municipal solid waste via codigestion with sewage sludge and metabolic pathway analysis. Bioresour Technol 296:122275. https://doi.org/10.1016/j.biortech.2019.122275

    Article  CAS  PubMed  Google Scholar 

  38. Akbay HEG, Dizge N, Kumbur H (2021) Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment. Bioresour Technol 340:125688. https://doi.org/10.1016/j.biortech.2021.125688

    Article  CAS  Google Scholar 

  39. Rawoof SAA, Kumar PS, Vo DVN, Subramanian S (2021) Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: a review. Environ Chem Lett 19(2):1043–1063. https://doi.org/10.1007/s10311-020-01122-6

    Article  CAS  Google Scholar 

  40. Wang C, Liu Y, Gao X, Chen H, Xu X, Zhu L (2018) Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresour Technol 268:28e35. https://doi.org/10.1016/j.biortech.2018.07.116

    Article  CAS  Google Scholar 

  41. Wang P, Peng H, Adhikari S, Higgins B, Roy P, Dai W, Shi X (2020) Enhancement of biogas production from wastewater sludge via anaerobic digestion assisted with biochar amendment. Bioresour Technol 309:123368. https://doi.org/10.1016/j.biortech.2020.123368

    Article  CAS  PubMed  Google Scholar 

  42. Wie W, Guo W, Ngo HH, Mannina G, Wang D, Chen X, Liu Y, Peng L, Ni BJ (2020) Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar. Bioresour Technol 306:123159. https://doi.org/10.1016/j.biortech.2020.123159

    Article  CAS  Google Scholar 

  43. Giwa AS, Xu H, Chang F, Wu J, Li Y, Ali N, Ding S, Wang K (2019) Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. J Environ Chem Eng 7:103067. https://doi.org/10.1016/j.jece.2019.103067

    Article  CAS  Google Scholar 

  44. Chiappero M, Norouzi O, Hu M, Demichelis F, Berruti F, Di Maria F, Masek O, Fiore S (2020) Review of biochar role as additive in anaerobic digestion processes. Renew Sust Energ Rev 131:110037. https://doi.org/10.1016/j.rser.2020.110037

    Article  CAS  Google Scholar 

  45. U.S. EPA (1994) A Plain English Guide to the EPA, Part 503 Biosolids Rule.US EPA/832/R-93–003. September 1994

  46. Zhang L, Duan H, Ye L, Liu L, Batstone DJ, Yuan Z (2019) Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Res 149:406–413. https://doi.org/10.1016/j.watres.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  47. Wang Q, Ye L, Jiang G, Jensen P, Batstone D, Yuan Z (2013) Free nitrous acid (FNA)-based pre-treatment enhances methane production from waste activated sludge. Environ Sci Technol 47(20):11897e11904. https://doi.org/10.1021/es402933b

    Article  CAS  Google Scholar 

  48. Schommer VA, Wenzel BM, Daroit DJ (2020) Anaerobic co-digestion of swine manure and chicken feathers: effects of manure maturation and microbial pretreatment of feathers on methane production. Renew Energy 152:1284–1291. https://doi.org/10.1016/j.renene.2020.01.154

    Article  CAS  Google Scholar 

  49. Thompson TM, Young BR, Baroutian S (2021) Enhancing biogas production from caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere 275:130035. https://doi.org/10.1016/j.chemosphere.2021.130035

    Article  CAS  PubMed  Google Scholar 

  50. Salminen E, Einola J, Rintala J (2003) The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather. Environ Technol 24:1079e1086. https://doi.org/10.1080/09593330309385648

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Tecnológico Nacional de México Campus Orizaba.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection, and analysis, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Manuel Méndez-Contreras.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read the manuscript and expressed their consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nava-Valente, N., Hernández-Aguilar, E., Alvarado-Lassman, A. et al. Effect of Acid Pretreatment on the Anaerobic Codigestion of Sewage Sludge, Chicken Litter, and Sugarcane Waste (SCW) for Biogas Production. Bioenerg. Res. 16, 1889–1901 (2023). https://doi.org/10.1007/s12155-022-10533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10533-y

Keywords

Navigation