Skip to main content
Log in

Optimization Study for Enhanced Biodiesel Production by Novel Yeast Isolates Cultivated in Dilute Acid Pretreated Pumpkin Peel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this study, lipid accumulation and biodiesel production potentials of novel yeast isolates grown in pumpkin peel were investigated. Effect of some critical parameters on lipid production such as initial biomass loading (5–20%), type and concentration of nitrogen source (cheese whey and (NH4)2SO4, 0.25–2 gL−1), and incubation time (0–96 h) were also determined. Furthermore, the effect of biomass loading (0.5–2 gL−1) and catalyst concentration (NaOH 1–3%) with methanol on fatty acid methyl ester (FAME) yields were optimized with response surface methodology (RSM). One yeast isolate showed the highest lipid production, and this strain was identified as Candida boidinii. The maximum lipid accumulation of the novel isolate was observed as 45.6% in the presence of 10% initial pumpkin peel loading, 0.5 gL−1 cheese whey, and 72-h incubation time. The highest FAME (C16-C18) yield was 92.3% when 2 gL−1 biomass and 3% catalyst (NaOH) were used. These results showed that Candida boidinii is a promising microorganism for biodiesel production and pumpkin peel supports the microbial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tabatabaei M, Aghbashlo M (2020) The critical role of advanced sustainability assessment tools in enhancing the real-world application of biofuels. Acta Innov 37:67–73. https://doi.org/10.32933/ActaInnovations.37.6

  2. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  3. Kakkad H, Khot M, Zinjarde S, RaviKumar A (2015) Biodiesel production by direct in situ transesterification of an oleaginous tropical mangrove fungus grown on untreated agro-residues and evaluation of its fuel properties. Bioenergy Res 8:1788–1799. https://doi.org/10.1007/s12155-015-9626-x

    Article  CAS  Google Scholar 

  4. Mandari V, Devarai SK (2021) Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: a critical review. Bioenergy Res. https://doi.org/10.1007/s12155-021-10333-w

    Article  PubMed  PubMed Central  Google Scholar 

  5. Festel G, Würmseher M, Rammer C (2014) Scaling and learning effects of biofuels conversion technologies. Energy Technol 2:612–617. https://doi.org/10.1002/ente.201400014

    Article  CAS  Google Scholar 

  6. Morais ARC, Da Costa Lopes AM, Costa P et al (2014) Cattle fat valorisation through biofuel production by hydrogenation in supercritical carbon dioxide. RSC Adv 4:32081–32091. https://doi.org/10.1039/c4ra05225k

    Article  CAS  Google Scholar 

  7. Singh D, Sharma D, Soni SL et al (2020) A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 262:116553. https://doi.org/10.1016/j.fuel.2019.116553

    Article  CAS  Google Scholar 

  8. Koreti D, Kosre A, Jadhav SK, Chandrawanshi NK (2022) A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production. Bioresour Bioprocess 9:1–19. https://doi.org/10.1186/s40643-022-00527-1

    Article  Google Scholar 

  9. Escorsim AM, Cordeiro CS, Ramos LP et al (2015) Assessment of biodiesel purification using CO2 at high pressures. J Supercrit Fluids 96:68–76. https://doi.org/10.1016/j.supflu.2014.08.013

    Article  CAS  Google Scholar 

  10. Bhuiya MMK, Rasul MG, Khan MMK et al (2016) Prospects of 2nd generation biodiesel as a sustainable fuel - Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sustain Energy Rev 55:1109–1128. https://doi.org/10.1016/j.rser.2015.04.163

    Article  CAS  Google Scholar 

  11. Leiva-Candia DE, Pinzi S, Redel-Macías MD et al (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42. https://doi.org/10.1016/j.fuel.2014.01.054

    Article  CAS  Google Scholar 

  12. Bhatia SK, Gurav R, Choi TR et al (2019) A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering. Bioresour Technol 286:121383. https://doi.org/10.1016/j.biortech.2019.121383

    Article  CAS  PubMed  Google Scholar 

  13. Chebbi H, Leiva-Candia D, Carmona-Cabello M et al (2019) Biodiesel production from microbial oil provided by oleaginous yeasts from olive oil mill wastewater growing on industrial glycerol. Ind Crops Prod 139:111535. https://doi.org/10.1016/j.indcrop.2019.111535

    Article  CAS  Google Scholar 

  14. Chopra J, Tiwari BR, Dubey BK, Sen R (2020) Environmental impact analysis of oleaginous yeast based biodiesel and bio-crude production by life cycle assessment. J Clean Prod 271:122349. https://doi.org/10.1016/j.jclepro.2020.122349

    Article  CAS  Google Scholar 

  15. Fakas S, Papanikolaou S, Galiotou-Panayotou M et al (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070. https://doi.org/10.1111/j.1365-2672.2008.03839.x

    Article  CAS  PubMed  Google Scholar 

  16. Intasit R, Cheirsilp B, Louhasakul Y et al (2020) Valorization of palm biomass wastes for biodiesel feedstock and clean solid biofuel through non-sterile repeated solid-state fermentation. Bioresour Technol 298:122551. https://doi.org/10.1016/j.biortech.2019.122551

    Article  CAS  PubMed  Google Scholar 

  17. Sathiyamoorthi E, Dikshit PK, Kumar P, Kim BS (2020) Co-fermentation of agricultural and industrial waste by Naganishia albida for microbial lipid production in fed-batch fermentation. J Chem Technol Biotechnol 95:813–821. https://doi.org/10.1002/jctb.6271

    Article  CAS  Google Scholar 

  18. Schieber A, Stintzing FC, Carle R (2001) By-products of plant food processing as a source of valuable compounds-recent developments. Trends Food Sci Technol 12:401–413. https://doi.org/10.1016/b978-0-08-100596-5.21346-2

    Article  CAS  Google Scholar 

  19. Yang R, Meng D, Hu X et al (2013) Saccharification of pumpkin residues by coculturing of trichoderma reesei RUT-C30 and phanerochaete chrysosporium burdsall with delayed inoculation timing. J Agric Food Chem 61:9192–9199. https://doi.org/10.1021/jf402199j

    Article  CAS  PubMed  Google Scholar 

  20. Fissore EN, Ponce NM, Stortz CA et al (2007) Characterisation of fiber obtained from pumpkin (cucumis moschata duch.) mesocarp through enzymatic treatment. Food Sci Technol Int 13:141–151. https://doi.org/10.1177/1082013207077914

    Article  CAS  Google Scholar 

  21. Santana NB, Teixeira Dias JC, Rezende RP et al (2018) Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE 13:1–15. https://doi.org/10.1371/journal.pone.0195206

    Article  CAS  Google Scholar 

  22. Gonçalves DB, Batista AF, Rodrigues MQRB et al (2013) Ethanol production from macaúba (Acrocomia aculeata) presscake hemicellulosic hydrolysate by Candida boidinii UFMG14. Bioresour Technol 146:261–266. https://doi.org/10.1016/j.biortech.2013.07.075

    Article  CAS  PubMed  Google Scholar 

  23. Papanikolaou S, Rontou M, Belka A et al (2017) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17:262–281. https://doi.org/10.1002/elsc.201500191

    Article  CAS  PubMed  Google Scholar 

  24. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Zhao Z (Kent), Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317. https://doi.org/10.1016/j.enzmictec.2007.02.008

    Article  CAS  Google Scholar 

  26. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  27. Yang RH, Su JH, Shang JJ et al (2018) Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 13:1–17. https://doi.org/10.1371/journal.pone.0206428

    Article  CAS  Google Scholar 

  28. Schulze I, Hansen S, Großhans S et al (2014) Characterization of newly isolated oleaginous yeasts - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express 4:1–11. https://doi.org/10.1186/s13568-014-0024-0

    Article  CAS  Google Scholar 

  29. Liu L, Chen J, Lim PE, Wei D (2018) Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J Appl Phycol 30:2997–3007. https://doi.org/10.1007/s10811-018-1526-y

    Article  CAS  Google Scholar 

  30. Jeevan Kumar SP, Banerjee R (2019) Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrason Sonochem 52:25–32. https://doi.org/10.1016/j.ultsonch.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  31. Koppram R, Tomás-Pejó E, Xiros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32:46–53. https://doi.org/10.1016/j.tibtech.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  32. Thangavelu K, Sundararaju P, Srinivasan N et al (2020) Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2. Biotechnol Biofuels 13:1–14. https://doi.org/10.1186/s13068-020-01676-1

    Article  CAS  Google Scholar 

  33. Kitcha S, Cheirsilp B (2011) Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 9:274–282. https://doi.org/10.1016/j.egypro.2011.09.029

    Article  CAS  Google Scholar 

  34. Poontawee R, Yongmanitchai W, Limtong S (2018) Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis. Process Biochem 66:150–161. https://doi.org/10.1016/j.procbio.2017.11.020

    Article  CAS  Google Scholar 

  35. Gohel HR, Ghosh SK, Braganza VJ (2013) Yeast as a viable and prolonged feedstock for biodiesel production. Int J Renew Energy Res 3:126–131. https://doi.org/10.20508/ijrer.93684

  36. Hossain E, Sultana SA, Karim MH, Ahmed I (2015) Vegetable peels: a promising feed resource for livestock. J Anim Feed Res 5:33–39

    CAS  Google Scholar 

  37. Mala SK, Kurian AE (2016) Nutritional Composition and Antioxidant Activity of Pumpkin Wastes. Int J Pharm Chem Biol Sci 6:336–344

    CAS  Google Scholar 

  38. Gong Z, Shen H, Wang Q et al (2013) Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels 6.https://doi.org/10.1186/1754-6834-6-36

  39. Nababan MYS, Fatriasari W, Wistara NJ (2020) Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00807-w

    Article  Google Scholar 

  40. Yellapu SK, Bezawada J, Kaur R et al (2016) Detergent assisted lipid extraction from wet yeast biomass for biodiesel: a response surface methodology approach. Bioresour Technol 218:667–673. https://doi.org/10.1016/j.biortech.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  41. Selvakumar P, Sivashanmugam P (2019) Ultrasound assisted oleaginous yeast lipid extraction and garbage lipase catalyzed transesterification for enhanced biodiesel production. Energy Convers Manag 179:141–151. https://doi.org/10.1016/j.enconman.2018.10.051

    Article  CAS  Google Scholar 

  42. Tacias-Pascacio VG, Torrestiana-Sánchez B, Dal Magro L et al (2019) Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renew Energy 135:1–9. https://doi.org/10.1016/j.renene.2018.11.107

    Article  CAS  Google Scholar 

  43. Verma P, Sharma MP, Dwivedi G (2016) Prospects of bio-based alcohols for Karanja biodiesel production: an optimisation study by response surface methodology. Fuel 183:185–194. https://doi.org/10.1016/j.fuel.2016.06.062

    Article  CAS  Google Scholar 

  44. Ma F, Clements LD, Hanna MA (1998) The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Trans Am Soc Agric Eng 41:1261–1264. https://doi.org/10.13031/2013.17292

  45. Thliveros P, Uçkun Kiran E, Webb C (2014) Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresour Technol 157:181–187. https://doi.org/10.1016/j.biortech.2014.01.111

    Article  CAS  PubMed  Google Scholar 

  46. Pullen J, Saeed K (2015) Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Process Technol 130:127–135. https://doi.org/10.1016/j.fuproc.2014.09.013

    Article  CAS  Google Scholar 

  47. Siwina S, Leesing R (2021) Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14. Renew Energy 163:237–245. https://doi.org/10.1016/j.renene.2020.08.138

    Article  CAS  Google Scholar 

  48. Miao Z, Tian X, Liang W et al (2020) Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production. Renew Energy 161:91–97. https://doi.org/10.1016/j.renene.2020.07.007

    Article  CAS  Google Scholar 

  49. Kuan IC, Kao WC, Chen CL, Yu CY (2018) Microbial biodiesel production by direct transesterification of rhodotorula glutinis biomass. Energies 11. https://doi.org/10.3390/en11051036

  50. Leung DYC, Guo Y (2006) Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol 87:883–890. https://doi.org/10.1016/j.fuproc.2006.06.003

    Article  CAS  Google Scholar 

  51. Eevera T, Rajendran K, Saradha S (2009) Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew Energy 34:762–765. https://doi.org/10.1016/j.renene.2008.04.006

    Article  CAS  Google Scholar 

  52. Katre G, Raskar S, Zinjarde S et al (2018) Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy 142:944–952. https://doi.org/10.1016/j.energy.2017.10.082

    Article  CAS  Google Scholar 

  53. Talebi AF, Tabatabaei M, Chisti Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 2:55–57. https://doi.org/10.18331/brj2015.1.2.4

  54. Rozina AM, Zafar M et al (2017) Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach. Energy 141:1810–1818. https://doi.org/10.1016/j.energy.2017.11.074

    Article  CAS  Google Scholar 

  55. Anwar F, Rashid U, Ashraf M, Nadeem M (2010) Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl Energy 87:779–785. https://doi.org/10.1016/j.apenergy.2009.09.020

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Ankara University Research Foundation. Project Number: 20L0430004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekin Demiray.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiray, E., Karatay, S.E. & Dönmez, G. Optimization Study for Enhanced Biodiesel Production by Novel Yeast Isolates Cultivated in Dilute Acid Pretreated Pumpkin Peel. Bioenerg. Res. 15, 1472–1481 (2022). https://doi.org/10.1007/s12155-022-10483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10483-5

Keywords

Navigation