Skip to main content
Log in

Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study was intended to determine the optimum condition for enzymatic hydrolysis of the jabon wood pulp. Ethanol production with separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes were also compared. Jabon was delignified with 25% (w/v) NaOH and the pulp was beaten to a freeness of 600, 400 and 200 mL CSF. Tween 80 surfactant was used to improve the enzymatic hydrolysis. The effect of pulp freeness, enzyme loading, and surfactant concentration on enzymatic hydrolysis was optimized by response surface method according to the Box-Behnken design. Under optimized condition (550 mL CSF pulp freeness, 28 FPU/g enzyme loading and 1.66% Tween 80), the yield of reducing sugar per oven-dry weight (g) of biomass was eight times higher than that of the untreated ones. The ethanol yields improved up to 24%. Separate hydrolysis and fermentation process resulted in a higher ethanol yield. The surfactant addition increases the conversion of cellulose into bioethanol by 27%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alvira P, Thomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  2. Krisnawati, H., Kallio, M., Kanninen, M. 2011. Anthocephalus cadamba Miq. ecology, silviculture and productivity. Bogor, Indonesia.

  3. Bijalwan A, Dobriyal MJR, Bhartiya JK (2014) A potential fast growing tree for agroforestry and carbon sequestration in India: Anthocephalus cadamba (Roxb.). Miq Am J Agric For 2(6):296–301. https://doi.org/10.11648/j.ajaf.20140206.21

    Article  Google Scholar 

  4. Wistara NJ, Carolina A, Pulungan WS, Emil N (2015) Effect of Tree age and active alkali on kraft pulping of white jabon. J Korean Wood Sci Technol 43(5):566–577. https://doi.org/10.5658/WOOD.2015.43.5.566

    Article  Google Scholar 

  5. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  6. Pareek N, Gillgren T, Jönsson LJ (2013) Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresour Technol 148:70–77. https://doi.org/10.1016/j.biortech.2013.08.121

    Article  Google Scholar 

  7. Martinez PM, Bakker R, Harmsen P, Gruppen H, Kabel M (2015) Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis. Ind Crop Prod 64:88–96. https://doi.org/10.1016/j.indcrop.2014.10.031

    Article  Google Scholar 

  8. Park J, Jones B, Koo B, Chen X, Tucker M, Yu JH, Pschorn T, Venditti R, Park S (2016) Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass. Bioresour Technol 199:59–67. https://doi.org/10.1016/j.biortech.2015.08.059

    Article  Google Scholar 

  9. Menegol D, Scholl AL, Fontana RC, Dillon AJP, Camassola M (2014) Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers Manag 88:1252–1256. https://doi.org/10.1016/j.enconman.2014.02.071

    Article  Google Scholar 

  10. Pandey A, Larroche C, Ricke SC, Dussap C, Gnansounou E (2011) Biofuels: alternative feedstocks and conversion processes, 1st edn. Academic Press, Burlington

    Google Scholar 

  11. Morando LEN, Gómez CXD, Zamora LL, Uscanga MGA (2014) Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology. Biomass Conv Bioref 4:15–23. https://doi.org/10.1007/s13399-013-0091-5

    Article  Google Scholar 

  12. Noori MS, Karimi K (2016) Detailed study of efficient ethanol production from elmwood by alkali pretreatment. Biochem Eng J 105:197–204. https://doi.org/10.1016/j.bej.2015.09.019

    Article  Google Scholar 

  13. Olsen SN, Bohlin C, Murphy L, Borch K, McFarland KC, Sweeny MD, Westh P (2011) Effects of non-ionic surfactants on the interactions between cellulases and tannic acid: a model system for cellulase-poly-phenol interactions. Enzym Microb Technol 49:353–359. https://doi.org/10.1016/j.enzmictec.2011.06.015

    Article  Google Scholar 

  14. Seo DJ, Fujita H, Sakoda A (2011) Structural changes of lignocelluloses by a nonionic surfactant, Tween 20, and their effects on cellulase adsorption and saccharification. Bioresour Technol 102:9605–9612. https://doi.org/10.1016/j.biortech.2011.07.034

    Article  Google Scholar 

  15. Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    Article  Google Scholar 

  16. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem 43:1019–1032. https://doi.org/10.1016/j.procbio.2008.06.004

    Article  Google Scholar 

  17. Eckard AD, Muthukumarappan K, Gibbons W (2013) Enzyme recycling in a simultaneous and separate saccharification and fermentation of corn stover: a comparison between the effect of polymeric micelles of surfactants and polypeptides. Bioresour Technol 132:202–209. https://doi.org/10.1016/j.biortech.2013.01.018

    Article  Google Scholar 

  18. Jones BW, Venditti R, Park S, Jameel H, Koo B (2013) Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresour Technol 147:353–360. https://doi.org/10.1016/j.biortech.2013.08.030

    Article  Google Scholar 

  19. Wistara NJ, Pelawi R, Fatriasari W (2016) The effect of lignin content and freeness of pulp on the bioethanol productivity of jabon wood. Waste Biomass Valor 7:1141–1146. https://doi.org/10.1007/s12649-016-9510-8

    Article  Google Scholar 

  20. Amin Y, Syafii W, Wistara NJ, Prasetya B (2014) Lime pretreatment on jabon wood to improve its reducing sugar yield. J Ilmu Teknol Kayu Trop 12(2):196–206

    Google Scholar 

  21. Saini JK, Anurag RK, Arya A, Kumbhar BK, Tewari L (2013) Optimization of saccharification of sweet sorghum bagasse using response surface methodology. Ind Crop Prod 44:211–219. https://doi.org/10.1016/j.indcrop.2012.11.011

    Article  Google Scholar 

  22. Eslahi N, Dadashian F, Nejad NH (2013) Optimization of enzymatic hydrolysis of wool fibers for nanoparticles production using response surface methodology. Adv Powder Technol 24:416–426. https://doi.org/10.1016/j.apt.2012.09.004

    Article  Google Scholar 

  23. Dai J, Mcdonald AG (2014) Production of fermentable sugars and polyhydroxybutyrate from hybrid poplar: response surface model optimization of a hot-water pretreatment and subsequent enzymatic hydrolysis. Biomass Bioenergy 71:275–284. https://doi.org/10.1016/j.biombioe.2014.09.030

    Article  Google Scholar 

  24. Rana V, Eckard AD, Ahring BK (2014) Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. Springerplus 3:516. doi:https://doi.org/10.1186/2193-1801-3-516

  25. Wise LE, Maxine M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43

    Google Scholar 

  26. Punyamurthy R, Sampathkumar D, Bennehalli B, Srinivasa CV (2013) Influence of esterification on the water absorption property of single abaca fiber. Chem Sci Trans 2(2):413–422. https://doi.org/10.7598/cst2013.371

    Article  Google Scholar 

  27. Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crop Prod 13:193–208

    Article  Google Scholar 

  28. Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Technical Report NREL/TP-510-42629. Colorado, US.

  29. Wrolstald RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (2005) Handbook of food analytical chemistry: water, proteins, enzymes, lipids, and carbohydrates. John Wiley & Sons Inc, Canada

    Google Scholar 

  30. Fatriasari W, Syafii W, Wistara NJ, Syamsu K, Prasetya B (2014) Digestibility of betung bamboo fiber following fungal pretreatment. Makara J Technol 18(2):51–58. https://doi.org/10.7454/mst.v18i2.2941

    Article  Google Scholar 

  31. Dowe N, McMillan J (2008) SSF experimental protocols — lignocellulosic biomass hydrolysis and fermentation. Technical Report NREL/TP-510-42630. Colorado, US.

  32. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  33. Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties - a review. Carbohydr Polym 115:785–803. https://doi.org/10.1016/j.carbpol.2014.08.047

    Article  Google Scholar 

  34. Chen Y, Wan J, Zhang X, Ma Y, Wang Y (2012) Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohydr Polym 87:730–736. https://doi.org/10.1016/j.carbpol.2011.08.051

    Article  Google Scholar 

  35. Hai LV, Park HJ, Seo YB (2013) Effect of PFI mill and Valley beater refining on cellulose degree of polymerization , alpha cellulose contents , and crystallinity of wood and cotton fibers. J Korea Tech Assoc Pulp Pap Ind 45(4):27–33. https://doi.org/10.7584/ktappi.2013.45.4.027

    Article  Google Scholar 

  36. Banavath HN, Bhardwaj NK, Ray AK (2011) A comparative study of the effect of refining on charge of various pulps. Bioresour Technol 102:4544–4551. https://doi.org/10.1016/j.biortech.2010.12.109

    Article  Google Scholar 

  37. Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  Google Scholar 

  38. Ruangmee A, Sangwichien C (2013) Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Convers Manag 73:381–388. https://doi.org/10.1016/j.enconman.2013.05.035

    Article  Google Scholar 

  39. Singh A, Bishnoi NR (2012) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw & ethanol production by yeast. Bioresour Technol 108:94–101. https://doi.org/10.1016/j.biortech.2011.12.084

    Article  Google Scholar 

  40. Barakat A, de Vries H, Rouau X (2013) Dry fractionation process as an important step in current & future lignocellulose biorefineries: a review. Bioresour Technol 134:362–373. https://doi.org/10.1016/j.biortech.2013.01.169

    Article  Google Scholar 

  41. Hui L, Liu Z, Ni Y (2009) Characterization of high-yield pulp (HYP) by the solute exclusion technique. Bioresour Technol 100:6630–6634. https://doi.org/10.1016/j.biortech.2009.07.055

    Article  Google Scholar 

  42. Chen X, Kuhn E, Wang W, Park S, Flanegan K, Trass O, Tenlep L, Tao L, Tucker M (2013) Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresour Technol 147:401–408

    Article  Google Scholar 

  43. Nonaka H, Sakai R (2013) Effect of beating on enzymatic saccharification of wood pulp hiroshi. J Jpn Inst Energy 92(11):1187–1190

    Article  Google Scholar 

  44. Pandey AK, Negi S (2015) Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresour Technol 192:115–125. https://doi.org/10.1016/j.biortech.2015.04.054

    Article  Google Scholar 

  45. Levine SE, Fox JM, Blanch HW, Clark DS (2010) A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 107(1):37–51. https://doi.org/10.1002/bit.22789

    Article  Google Scholar 

  46. Martín C, Rocha GJ deMoraes, Santos JRA dos, Wanderley MC de A, Gouveia ER (2012) Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse. Quim Nova 35(10):1927–1930.

  47. Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H (2015) Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 68:107–116. https://doi.org/10.1016/j.egypro.2015.03.238

    Article  Google Scholar 

  48. Jin W, Chen L, Hu M, Sun D, Li A, Li Y, Hu Z, Zhou S, Tu Y, Xia T, Wang Y, Xie G, Li Y, Bai B, Peng L (2016) Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Appl Energy 175:82–90. https://doi.org/10.1016/j.apenergy.2016.04.104

    Article  Google Scholar 

  49. Tu M, Zhang X, Paice M, Mcfarlane P, Saddler JN (2009) Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol Prog 25(4):1122–1129. https://doi.org/10.1021/bp.198

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Directorate General of Higher Education, the Ministry of National Education of the Republic of Indonesia (BPPDN DIKTI) for the master’s degree scholarship awarded to Martua Yan Steward Nababan in 2013. The authors are also thankful to Research Center for Biomaterial, Indonesian Institute of Sciences (LIPI) for the research facilities. Special thanks are addressed to Sita Heris Anita, M. Si, and Maulida Oktaviani, S. Si for valuable discussion on technical enzymatic hydrolysis and fermentation stage.

Funding

This study was funded by The Directorate of Research and Community Service-Ministry of Research, Technology and Higher Education of the Republic of Indonesia under contract number of 079/SP2H/LT/DRPM/II/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyoman J Wistara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nababan, M.Y.S., Fatriasari, W. & Wistara, N.J. Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Conv. Bioref. 12, 2165–2174 (2022). https://doi.org/10.1007/s13399-020-00807-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00807-w

Keywords

Navigation