Skip to main content

Advertisement

Log in

Biomass and Lipid Productivities of Cyanobacteria- Leptolyngbya foveolarum HNBGU001

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The initial biomass density had a significant effect on the growth behaviour of Leptolyngbya foveolarum HNBGU-001 in the batch culture. The test organism produced substantial amounts of biomass and lipids when allowed to grow at 40 °C and pH 8.0. The Placket-Burman design appropriately indicated the positive and negative influences of the tested nutrient factors on biomass and lipid productivities of L. foveolarum. Employing the Box-Behnken design of response surface methodology, the elevated concentrations of sulphate-S (300 mg/L) and carbonate-C (45.39 mg/L) but relatively low levels of phosphate-P (10 mg/L) and nitrate-N (375 mg/L) were identified as the optimal nutritional requirements of the test organism for the maximum lipid productivity (49.60 ± 0.70 mg/L/day) along with high lipid content (32.10 ± 0.40% dry cell weight) and biomass productivity (154.80 ± 3.60 mg/L/day). These maximized responses of biomass productivity, lipid content, and lipid productivity were respectively 2.8-, 2.4-, and 6.8-fold higher than their corresponding values under the unoptimized conditions. FAME analysis of lipids obtained from the test organism revealed some promising features for their use as algal biodiesel feedstock. Nonetheless, the test organism seems to have better potential than several other microalgae for use in biofuel production as it can give a high output of biomass as also lipids at elevated temperature prevalent in outdoor conditions of subtropical and tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the data are available with the corresponding author and may be provided on request.

References

  1. Singh P, Singh RK, Kumar D (2018) Microalgae: potential agents for carbon dioxide mitigation. In: Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (eds) Microbes for climate resilient agriculture, first. John Wiley & Sons, Inc., Hoboken, pp 57–74. https://doi.org/10.1002/9781119276050.ch4

    Chapter  Google Scholar 

  2. Shanmugam S, Mathimani T, Anto S, Sudhakar MP, Kumar SS, Pugazhendhi A (2020) Cell density, lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresour Technol 304:123061. https://doi.org/10.1016/j.biortech.2020.123061

    Article  CAS  PubMed  Google Scholar 

  3. DOE (United States Department of Energy) (2016) National algal biofuels technology review. https://www.energy.gov/sites/prod/files/2016/06/f33/national_algal_biofuels_technology_review.pdf. Accessed 24 June 2017

  4. Veillette M, Giroir-Fendler A, Faucheux N, Heitz M (2018) Biodiesel from microalgae lipids: from inorganic carbon to energy production. Biofuels 9:175–202. https://doi.org/10.1080/17597269.2017.1289667

    Article  CAS  Google Scholar 

  5. Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol 98:4805–4816. https://doi.org/10.1007/s00253-014-5694-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim JH, Choi W, Jeon SM, Kim T, Park A, Kim J, Heo SJ, Oh C, Shim WB, Kang DH (2015) Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J Appl Microbiol 119:1597–1612. https://doi.org/10.1111/jam.12961

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Chen J, Qin S, Zeng M, Jiang Y, Hu L, Xiao P, Hao W, Hu Z, Lei A, Wang J (2018) Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 11:1–12. https://doi.org/10.1186/s13068-018-1041-z

    Article  CAS  Google Scholar 

  8. Sharma D, Yadav KD, Kumar S (2018) Biotransformation of flower waste composting: optimization of waste combinations using response surface methodology. Bioresour Technol 270:198–207. https://doi.org/10.1016/j.biortech.2018.09.036

    Article  CAS  PubMed  Google Scholar 

  9. Sompong U, Hawkins PR, Besley C, Peerapornpisal Y (2005) The distribution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand. FEMS Microbiol Ecol 52:365–376. https://doi.org/10.1016/j.femsec.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  10. Santhakumaran P, Kookal SK, Mathew L, Ray JG (2019) Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. Bioenergy Res 12:680–693. https://doi.org/10.1007/s12155-019-09990-9

    Article  CAS  Google Scholar 

  11. Thangavel K, Radha Krishnan P, Nagaiah S, Kuppusamy S, Chinnasamy S, Rajadorai JS, Nellaiappan Olaganathan G, Dananjeyan B (2018) Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere reserve of India. BMC Microbiol 18:1–17. https://doi.org/10.1186/s12866-017-1144-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith-Bädorf HD, Chuck CJ, Mokebo KR, MacDonald H, Davidson MG, Scott RJ (2013) Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production. AMB Express 3:1–14. https://doi.org/10.1186/2191-0855-3-9

    Article  CAS  Google Scholar 

  13. Patel VK, Sundaram S, Patel AK, Kalra A (2018) Characterization of seven species of cyanobacteria for high-quality biomass production. Arab J Sci Eng 43:109–121. https://doi.org/10.1007/s13369-017-2666-0

    Article  CAS  Google Scholar 

  14. Singh J, Thakur IS (2015) Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: a toxicological perspective. Algal Res 11:294–303. https://doi.org/10.1016/j.algal.2015.07.010

    Article  Google Scholar 

  15. Hughes AR, Sulesky A, Andersson B, Peers G (2018) Sulfate amendment improves the growth and bioremediation capacity of a cyanobacteria cultured on municipal wastewater centrate. Algal Res 32:30–37. https://doi.org/10.1016/j.algal.2018.03.004

    Article  Google Scholar 

  16. Tao R, Bair R, Lakaniemi AM, van Hullebusch ED, Rintala JA (2019) Use of factorial experimental design to study the effects of iron and sulfur on growth of Scenedesmus acuminatus with different nitrogen sources. J Appl Phycol 32:221–231. https://doi.org/10.1007/s10811-019-01915-5

    Article  CAS  Google Scholar 

  17. Sakarika M, Kornaros M (2016) Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresour Technol 219:694–701. https://doi.org/10.1016/j.biortech.2016.08.033

    Article  CAS  PubMed  Google Scholar 

  18. Ernst A, Deicher M, Herman PMJ, Wollenzien UIA (2005) Nitrate and phosphate affect cultivability of cyanobacteria from environments with low nutrient levels. Appl Environ Microbiol 71:3379–3383. https://doi.org/10.1128/AEM.71.6.3379-3383.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang B, Marchand J, Blanckaert V, Lukomska E, Ulmann L, Wielgosz-Collin G, Rabesaotra V, Moreau B, Bougaran G, Mimouni V, Morant-Manceau A (2019) Nitrogen and phosphorus limitations induce carbon partitioning and membrane lipid remodelling in the marine diatom Phaeodactylum tricornutum. Eur J Phycol 54:342–358. https://doi.org/10.1080/09670262.2019.1567823

    Article  CAS  Google Scholar 

  20. Daniel RM, Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57:250–264. https://doi.org/10.1007/PL00000688

    Article  CAS  PubMed  Google Scholar 

  21. Patel A, Matsakas L, Rova U, Christakopoulos P (2019) A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour Technol 278:424–434. https://doi.org/10.1016/j.biortech.2019.01.063

    Article  CAS  PubMed  Google Scholar 

  22. Maslova IP, Mouradyan EA, Lapina SS, Klyachko-Gurvich GL, Los DA (2004) Lipid fatty acid composition and thermophilicity of cyanobacteria. Russ J Plant Physiol 51:353–360. https://doi.org/10.1023/B:RUPP.0000028681.40671.8d

    Article  CAS  Google Scholar 

  23. Qv XY, Guo YY, Jiang JG (2014) Assessment of the effects of nutrients on biomass and lipid accumulation in Dunaliella tertiolecta using a response surface methodology. RSC Adv 4:42202–42210. https://doi.org/10.1039/c4ra04192e

    Article  CAS  Google Scholar 

  24. Suthar S, Verma R, Kumar K (2018) Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock. Process Saf Environ Prot 113:141–148. https://doi.org/10.1016/j.psep.2017.09.018

  25. Mera R, Torres E, Abalde J (2016) Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media. J Phycol 52:75–88. https://doi.org/10.1111/jpy.12367

    Article  CAS  PubMed  Google Scholar 

  26. Kanaga K, Pandey A, Kumar S, Geetanjali (2016) Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738. Bioresour Technol 200:940–950. https://doi.org/10.1016/j.biortech.2015.11.017

    Article  CAS  PubMed  Google Scholar 

  27. Pandey A, Srivastava S, Kumar S (2019) Sequential optimization of essential nutrients addition in simulated dairy effluent for improved Scenedesmus sp ASK22 growth, lipid production and nutrients removal. Biomass Bioenergy 128:105319. https://doi.org/10.1016/j.biombioe.2019.105319

    Article  CAS  Google Scholar 

  28. Chakravarty S, Mallick N (2019) Optimization of lipid accumulation in an aboriginal green microalga Selenastrum sp. GA66 for biodiesel production. Biomass Bioenergy 126:1–13. https://doi.org/10.1016/j.biombioe.2019.05.006

    Article  CAS  Google Scholar 

  29. Rippka R, Deruelles J, Waterbury JB (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  30. Thomas J, Jayachithra EV (2015) Growth kinetics of Chlorococcum humicola - a potential feedstock for biomass with biofuel properties. Ecotoxicol Environ Saf 121:258–262. https://doi.org/10.1016/j.ecoenv.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  31. Rakić T, Jančić-Stojanovic B, Malenović A et al (2012) Demasking large dummy effects approach in revealing important interactions in Plackett-Burman experimental design. J Chemom 26:518–525. https://doi.org/10.1002/cem.2461

    Article  CAS  Google Scholar 

  32. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  33. Wang S, Cao M, Wang B, Deng R, Gao Y, Liu P (2019) Optimization of growth requirements and scale-up cultivation of freshwater algae Desmodesmus armatus using response surface methodology. Aquac Res 50:3313–3325. https://doi.org/10.1111/are.14290

    Article  CAS  Google Scholar 

  34. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202. https://doi.org/10.1016/j.watres.2014.07.025

    Article  CAS  PubMed  Google Scholar 

  35. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  36. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  CAS  Google Scholar 

  37. Van Wychen S, Ramirez K, Laurens LM (2013) Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Technical Report NREL/TP-5100-60958. National Renewable Energy Laboratory, 15013 Denver West Parkway

  38. Li J, Li C, Lan CQ, Liao D (2018) Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Microb Cell Factories 17:1–10. https://doi.org/10.1186/s12934-018-0953-4

    Article  CAS  Google Scholar 

  39. Sakarika M, Kornaros M (2017) Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresour Technol 243:356–365. https://doi.org/10.1016/j.biortech.2017.06.110

    Article  CAS  PubMed  Google Scholar 

  40. Sharma J, Kumar SS, Bishnoi NR, Pugazhendhi A (2018) Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq 269:712–720. https://doi.org/10.1016/j.molliq.2018.08.103

    Article  CAS  Google Scholar 

  41. Xia L, Yang H, He Q, Hu C (2015) Physiological responses of freshwater oleaginous microalgae Desmodesmus sp. NMX451 under nitrogen deficiency and alkaline pH-induced lipid accumulation. J Appl Phycol 27:649–659. https://doi.org/10.1007/s10811-014-0371-x

    Article  CAS  Google Scholar 

  42. Tiwari ON, Bhunia B, Muthuraj M et al (2020) Optimization of process parameters on lipid biosynthesis for sustainable biodiesel production and evaluation of its fuel characteristics. Fuel 269:117471. https://doi.org/10.1016/j.fuel.2020.117471

    Article  CAS  Google Scholar 

  43. Nordstrom DK, Ball JW, McCleskey BR (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. In: Inskeep W, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University, Bozeman, pp 73–94

    Google Scholar 

  44. Bajwa K, Bishnoi NR, Kirrolia A, Gupta S, Tamil Selvan S (2019) Response surface methodology as a statistical tool for optimization of physio-biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Appl Water Sci 9. https://doi.org/10.1007/s13201-019-0969-x

  45. Morschett H, Freier L, Rohde J, Wiechert W, von Lieres E, Oldiges M (2017) A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design. Biotechnol Biofuels 10:1–13. https://doi.org/10.1186/s13068-017-0711-6

    Article  CAS  Google Scholar 

  46. Srinivasan R, Mageswari A, Subramanian P, Suganthi C, Chaitanyakumar A, Aswini V, Gothandam KM (2018) Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V−101 by reducing oxidative stress induced during macronutrient deficit conditions. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-25417-5

    Article  CAS  Google Scholar 

  47. Van Mooy BAS, Rocap G, Fredricks HF et al (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci U S A 103:8607–8612. https://doi.org/10.1073/pnas.0600540103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766. https://doi.org/10.1039/b903941d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Botany and Microbiology, H.N.B. Garhwal University, for providing necessary facilities. PS thanks the University Grants Commission, New Delhi, for financial assistance in the form of a University Research Fellowship and CSIR-Indian Institute of Petroleum, Dehradun, for GC-MS analysis.

Funding

1. University Grants Commission, New Delhi, India

2. Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, India

Author information

Authors and Affiliations

Authors

Contributions

PS planned and executed experiments, prepared a draft of the manuscript, and finalized the manuscript for submission. D. Kumar was involved in conceiving the idea and planning of the experiments. Being the supervisor of the first and corresponding author, he was responsible for the organization of lab and experimental facilities for the work contained in the paper.

Corresponding author

Correspondence to Preeti Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary Fig. 1

Perturbation plots of factors influencing biomass productivity (a) and lipid content (b) of L. foveolorum HNBGU-001 [A: nitrate-N, B: phosphate-P, C: sulphate-S, D: carbonate-C, E: Ca2+, F: Fe3+, K: Dummy factor]. (PNG 344 kb).

High resolution image (TIF 11936 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumar, D. Biomass and Lipid Productivities of Cyanobacteria- Leptolyngbya foveolarum HNBGU001. Bioenerg. Res. 14, 278–291 (2021). https://doi.org/10.1007/s12155-020-10170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10170-3

Keywords

Navigation