Skip to main content

Advertisement

Log in

Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bioconversion of photosynthetic cyanobacteria biomass feedstock into biofuels, and commodity chemical compounds is limited. Seven strains of cyanobacteria, namely: Synechocystis PCC 6803, Synechococcus PCC 7942, Nostoc muscorum, Oscillatoria sp., Anabaena cylindrica, Lyngbya sp. and Phormidium sp. were characterized for their growth, biomass, carbohydrates and lipids production. The maximum specific growth rate, the number of generations, biomass, and lipid yield as well as lipid content (13.1%) were observed in Synechocystis PCC 6803 among the evaluated strains. Overall 11.0, 7.5, 8.9, 4.8, 10.3, and 8.4% lipid, and 14.8, 32.1, 18.6, 26.2, 17.3, 27.8% carbohydrate content were obtained in Synechococcus PCC 7942, N. muscorum, Oscillatoria sp., A. cylindrica, Lyngbya sp. and Phormidium sp., respectively. In contrast, carbohydrate content in Synechocystis PCC 6803 cells was 9.89%. N. muscorum and Phormidium sp. were elucidated as a good candidate species for the carbohydrate enriched biomass. Therefore, Synechocystis PCC 6803 was screened as a robust species for lipid-based biofuels, while Phormidium sp. and N. muscorum can be exploited for the carbohydrate enriched biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoiczyk, E.; Hansel, A.: Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J. Bacteriol. 182(5), 1191–1199 (2002)

    Article  Google Scholar 

  2. Bendall, D.S.; Howe, C.J.; Nisbet Euan, G.: Nisbet RER. Introduction. Photosynthetic and atmospheric evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1504), 2625–2628 (2008)

    Article  Google Scholar 

  3. Ducat, D.C.; Way, J.C.; Silver, P.A.: Engineering cyanobacteria to generate high value products. Trends Biotechnol. 29, 95–103 (2011)

    Article  Google Scholar 

  4. Brennan, L.; Owende, P.: Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2009)

    Article  Google Scholar 

  5. Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S.: Biofuels from algae: challenges and potential. Biofuels 1(5), 763–784 (2010)

    Article  Google Scholar 

  6. Borowitzka, M.A.; Hallegraeff, G.M.: Economic importance of algae. In: McCarthy, P.M., Orchard, A.E. (eds.) Algae of Australia: Introduction, pp. 594–622. ABRS, Canberra (2007)

    Google Scholar 

  7. Borowitzka, M. A.: The biotechnology of microalgal carotenoid production. In: Aubert J.P. & Martin P.M.V. (eds.) Microbes, Environment, Biotechnology. Colloques Internationaux de L’annee Pasteur. Institut Louis Malarde: Papeete, Tahiti. pp. 149–151. (1995)

  8. Patel, V.K.; Maji, D.; Singh, A.K.; Suseela, M.R.; Sundaram, S.; Kalra, A.: A natural plant growth promoter, calliterpenone, enhances growth and biomass, carbohydrate, and lipid production in cyanobacterium synechocystis PCC 6803. J. Appl. Phycol. 26(1), 279–286 (2014)

    Article  Google Scholar 

  9. Koller, M.; Muhr, A.; Braunegg, G.: Microalgae as versatile cellular factories for valued products. Algal Res. 6, 52–63 (2014)

    Article  Google Scholar 

  10. Martinez, L.; Moran, A.; Garcia, A.I.: Effect of light on Synechocystis sp. and modelling of its growth rate as a response to average irradiance. J. Appl. Phycol. 24, 125–134 (2012)

    Article  Google Scholar 

  11. Dexter, J.; Fu, P.: Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2, 857–864 (2009)

    Article  Google Scholar 

  12. Wang, B.; Wang, J.; Zhang, W.; Meldrum, D.R.: Application of synthetic biology in cyanobacteria and algae. Front. Microbiol. 3, 1–15 (2012)

    Google Scholar 

  13. Nascimento, I.A.; Marques, S.S.I.; Cabanelas, I.T.D.; Pereira, S.A.; Druzian, J.I.; De Souza, C.O.; Vich, D.V.; De Carvalho, G.C.; Nascimento, M.A.: Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Res. 6(1), 1–13 (2013)

    Article  Google Scholar 

  14. Hempel, N.; Petrick, I.; Behrendt, F.: Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J. Appl. Phycol. 24, 1407–1418 (2012)

    Article  Google Scholar 

  15. Kazamia, E.; Riseley, A.; Howe, C.; Smith, A.G.: An engineered community approach for industrial cultivation of microalgae. Indian J. Biotechnol. 10, 184–190 (2014)

    Article  Google Scholar 

  16. Lindberg, P.; Park, S.; Melis, A.: Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Eng. 12(1), 70–79 (2010)

    Article  Google Scholar 

  17. Priyadarshani, I.; Rath, B.: Commercial and industrial applications of micro algae—a review. J. Algal Biomass Util. 3(4), 89–100 (2012)

    Google Scholar 

  18. Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979)

    Article  Google Scholar 

  19. Desikachary, T.V.: Cyanophyta, Indian Council of Agricultural Research, New Delhi. 686 (1959)

  20. Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Riet, K.V.T.: Modeling of the bacterial growth curve. Appl. Environ Microbiol. 56(6), 1875–1881 (1990)

    Google Scholar 

  21. Sheng, J.; Vannela, R.; Rittmann, B.E.: Disruption of Synechocystis PCC 6803 for lipid extraction. Water Sci. Technol. 65, 567–573 (2012)

    Article  Google Scholar 

  22. Madigan, T.M.; Martinko, J.M.; Stahl, D.A.; Clark, D.P.: Brock biology of microorganisms, Benjamin Cummings,United States of America. ISBN: 13:978- 0-321-64963-8, Thirteenth edition, pp. 124-125 (2011)

  23. Prescott L.M., Harley J.P., Klein D.A.: Microbiology, The Mcgraw-Hill Companies, New York. ISBN: 0-07-282905-2, fifth edition, pp. 116. (2002)

  24. Bligh, E.G.; Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959)

    Article  Google Scholar 

  25. Loewus, F.A.: Improvement in the anthrone method for determination of carbohydrates. Ann. Chem. 24, 219–223 (1952)

    Article  Google Scholar 

  26. Foy, R.H.: The influence of surface to volume ratio on the growth rates of planktonic blue-green algae. Br. Phycol. J. 15, 3 (1980)

    Google Scholar 

  27. Mackinney, G.: Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 315–322 (1941)

    Google Scholar 

  28. Jensen, A.: Chlorophylls and carotenoids-Handbook of physiological methods: physiological and biochemical methods, pp. 59–70. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  29. Govindjee: Announcement: Advances in Photosynthesis and Respiration, Volume 19: ‘Chlorophyll a Fluorescence: A Signature of Photosynthesis’, edited by George C. Papageorgiou and Govindjee. Photosynthesis Res. 83:101–105 (2005)

  30. Ernst, A.; Deicher, M.; Herman, P.M.J.; Wollenzien, U.I.A.: Nitrate and phosphate affect cultivability of cyanobacteria from environments with low nutrient levels. Appl. Environ. Microbiol. 71(6), 3379–3383 (2005)

    Article  Google Scholar 

  31. Minhas, A.K.; Hodgson, P.; Barrow, C.J.; Adholeya, A.: A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 7, 546 (2016)

    Article  Google Scholar 

  32. Shurin, J.B.; Abbott, R.L.; Deal, M.S.; Kwan, G.T.; Litchman, E.; McBride, R.C.; Mandal, S.; Smith, V.H.: Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol. Lett. 16, 1393–1404 (2013)

    Article  Google Scholar 

  33. Shruthi, M.S.; Rajashekhar, M.: Effect of salinity and pH on the growth and biomass production in the four species of estuarine cyanobacteria. J. Algal Biomass Util. 5(4), 29–36 (2014)

    Google Scholar 

  34. Lynch F.; Sanchez A.S.; Jamsa M.; Sivonen K.; Aro E.M.; Allahverdiyeva Y.: Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Res. doi:10.1016/j.algal.2015.05.015 (2015).

  35. Chen, G.; Qu, S.; Wang, Q.; Bian, F.; Peng, Z.; Zhang, Y.; Ge, H.; Yu, J.; Xuan, N.; Bi, Y.; He, Q.: Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnol. Biofuels 7, 32 (2014)

  36. Chi, X.; Yang, Q.; Zhao, F.; Qin, S.; Yang, Y.; Shen, J.; Lin, H.: Comparative analysis of fatty acid desaturases in cyanobacterial genomes. Comp. Funct. Genomics. doi:10.1155/2008/284508

  37. McGuire, R.F.: A numerical taxonomic study of Nostoc and Anabaena. J. Phycol. 20, 454–460 (1984)

    Article  Google Scholar 

  38. Charuchinda, P.; Jaisai, N.; Sirisattha, S.; Waditee-Sirisattha, R.: Overexpression of ACP gene from cyanobacterium Synechococcus elongatus PCC 7942 modulates lipid profiles in expressing cells. In: The 26th Meeting of the Thai Society for Biotechnology and International Conference (2014)

  39. Iwaki, T.; Haranoh, K.; Inoue, N.; Kojima, K.; Satoh, R.; Nishino, T.; Wada, S.; Ihara, H.; Tsuyama, S.; Kobayashi, H.; Wadano, A.: Expression of foreign type I ribulose-1, 5-bisphosphate carboxylase/oxygenase (EC4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC 7942 cells. Photosynthesis Res. 88:287–297. (2006)

  40. Ballicora, M.A.; Iglesias, A.A.; Preiss, J.: ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol. Biol. Rev. 67(2), 213–225 (2003)

    Article  Google Scholar 

  41. Beveridge, T.J.: The bacterial surface: general considerations towards design and function. Can. J. Microbiol. 34, 363–372 (1988)

    Article  Google Scholar 

  42. Koch, A.L.: What size should a bacterium be? A question of scale. Annu. Rev. Microbiol. 50, 317–348 (1996)

    Article  Google Scholar 

  43. Pfeil, B.E.; Schoefs, B.; Spetea, C.: Function and evolution of channels and transporters in photosynthetic membranes. Cell. Mol. Life Sci. 71, 979–998 (2014)

    Article  Google Scholar 

  44. Schulz, H.N.; Jorgensen, B.B.: Big bacteria. Annu. Rev. Microbiol. 55, 105–137 (2001)

    Article  Google Scholar 

  45. Young, K.D.: The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006)

    Article  Google Scholar 

  46. Sun, J.; Liu, D.: Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25(11), 1331–1346 (2003)

    Article  Google Scholar 

  47. Singh, S.P.; Montgomery, B.L.: Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol. 19(6), 278–85 (2011)

    Article  Google Scholar 

  48. Hu, B.; Yang, G.; Zhao, W.; Zhang, Y.; Zhao, J.: MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 63:1640–1652 (2007).

  49. Koksharova, O.A.; Klint, J.; Rasmussen, U.: Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. Microbiology 153, 2505–2517 (2007)

    Article  Google Scholar 

  50. Maxwell, K.; Johnson, G.N.: Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51(345), 659–668 (2000)

    Article  Google Scholar 

  51. Boulay, C.; Abasova, L.; Six, C.; Vass, I.; Kirilovsky, D.: Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochimica et Biophysica Acta (BBA) -. Bioenergetics 1777(10), 1344–1354 (2008)

    Article  Google Scholar 

  52. Smith, V.H.; Crews, T.: Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Res. 4, 23–34 (2014)

    Article  Google Scholar 

  53. Patel, V. K.; Sahoo, N. K.; Patel, A. K.; Rout, P. K.; Naik, S. N.; Kalra, A.: Exploring microalgae consortia for biomass production: a synthetic ecological engineering approach towards sustainable production of biofuel feedstock. In: Gupta, S.K., Malik, A., Bux, F., Gupta, S.K. et al. (eds.) Springer, Algal Biofuels, doi:10.1007/978-3-319-51010-1_6, (2017)

Download references

Acknowledgements

VKP is thankful to UGC New Delhi, India, for providing him UGC-D. Phil Research Fellowship. He is also thankful to Director, CSIR-CIMAP, Lucknow, India, for permitting him to do some experiments at CIMAP. Akash Kumar Patel is thankful to UGC New Delhi, India, for providing him Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanthy Sundaram or Alok Kalra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.K., Sundaram, S., Patel, A.K. et al. Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production. Arab J Sci Eng 43, 109–121 (2018). https://doi.org/10.1007/s13369-017-2666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2666-0

Keywords

Navigation