Skip to main content
Log in

Valorization of Rice Straw for Ethanol Production and Lignin Recovery Using Combined Acid-Alkali Pre-treatment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Rice straw was sequentially pre-treated with sulphuric acid (3% v/v) and sodium hydroxide (4% w/v) which resulted in the removal of ~ 90% hemicelluloses and ~ 55% lignin, respectively. The pre-treated rice straw was saccharified with cellulases to produce 787 mg/g reducing sugars, which were further fermented with Saccharomyces cerevisae HAU. The acid hydrolysate produced after acid treatment was also subjected to fermentation by Pichia stipitis NCIM 3499. The hexose and pentose fermentation leads to production of 26.9 g/L and 9.4 g/L of ethanol (79% and 93% fermentation efficiency, respectively). High purity (98%) lignin (146 mg/g dry substrate) was precipitated by direct acidification with HCl from the spent liquor obtained after alkali treatment. Extracted lignin was characterized by FTIR and TGA. Overall, the study aimed at effective utilization of all major polymers of rice straw into valuable products making the bioethanol production process more sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pejin JD, Mojovic LV, Pejin DJ, Kocic-Tanackov SDC, Nikolic SB, Djukic-Vukovic AP (2015) Bioethanol production from Triticale by simultaneous saccharification and fermentation with magnesium or calcium ions addition. Fuel 142:58–64

    Article  CAS  Google Scholar 

  2. Panagiotopoulos IA, Bakker RR, Vrije TD, Claassen PAM, Koukios EG (2012) Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw. Bioresour Technol 128:345–350

    Article  CAS  PubMed  Google Scholar 

  3. Cotana F, Cavalaglio G, Nicolini A, Gelosia M, Coccia V, Petrozzi A, Brinchi L (2014) Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass. Energy Procedia 45:52–60

    Article  CAS  Google Scholar 

  4. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation of Prosopisjuliflora, a woody substrate, for production of cellulosic ethanol by Saccharomyces cerevisae and Pichiastipitis-NCIM 3498. Bioresour Technol 100:1214–1220

    Article  CAS  PubMed  Google Scholar 

  5. Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrere H (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456

    Article  CAS  Google Scholar 

  6. Xin D, Yang Z, Liu F, Xu X, Zhang J (2015) Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour Technol 175:529–536

    Article  CAS  PubMed  Google Scholar 

  7. Singh R, Srivastava M, Shukla A (2015) Environmental sustainability of bioethanol production from rice straw in India: a review. Renew Sust Energ Rev 54:202–216

    Article  CAS  Google Scholar 

  8. Han KJ, Pitman WD, Kim M, Day DF, Alison MW, McCormick ME, Aita G (2012) Ethanol production potential of sweet sorghum assessed using forage fiber analysis procedures. GCB Bioenergy 5:358–366

    Article  CAS  Google Scholar 

  9. Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20(2):205–218

    Article  CAS  Google Scholar 

  10. Park Y, Doherty WOS, Halley PJ (2008) Developing lignin based resin coatings and composites. Ind Crop Prod 27(2):163–167

    Article  CAS  Google Scholar 

  11. Toledano A, Serrano L, Labidi J (2012) Process of olive tree pruning lignin revalorization. Chem Eng J 193(3):396–403

    Article  CAS  Google Scholar 

  12. Stewart H, Golding M, Merino LM, Archer R, Davies C (2014) Manufacture of lignin microparticles by anti-solvent precipitation: effect of preparation temperature and presence of sodium dodecyl sulfate. Food Res Int 66:93–99

    Article  CAS  Google Scholar 

  13. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  14. Wiselogel A, Tyson S and Johnson D (1996) Biomass feedstock resources and composition. In: Wyman CE (ed) Handbook on bioethanol: production and utilization (applied energy technology series), pp 105–118

  15. Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913

    Article  CAS  PubMed  Google Scholar 

  16. Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) Ethanol production from xylose by Pichiastipitis NRRL Y-7124 in a stirred tank bioreactor. Braz J Chem Eng 28(1):151–156

    Article  CAS  Google Scholar 

  17. Yucel HG, Aksu Z (2015) Ethanol fermentation characteristics of Pichiastipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–799

    Article  CAS  Google Scholar 

  18. Mateo S, Roberto IC, Sanchez S, Moya AJ (2013) Detoxification of hemicellulose hydrolysate from olive tree pruning residue. Ind Crop Prod 49:196–203

    Article  CAS  Google Scholar 

  19. Soudham VP, Brandberg T, Mikkola JP, Larsson C (2014) Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresour Technol 166:559–565

    Article  CAS  PubMed  Google Scholar 

  20. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  PubMed  Google Scholar 

  21. Chung BY, Lee JT, Bai HW, Kim UJ, Bae HJ, Wi SG, Cho JY (2013) Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiat Phys Chem 81(8):1003–1007

    Article  CAS  Google Scholar 

  22. Xue BL, Wen JL, Sun RC (2014) Lignin based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization. ACS Sustain Cheml Eng 1:1474–1480

    Article  CAS  Google Scholar 

  23. Tortora M, Cavalieri F, Mosesso P, Ciaffardini F, Melone F, Crestini C (2014) Ultrasound driven assembly of lignin into microparticles for storage and delivery of hydrophobic molecules. Biomacromolecules 15:1634–1643

    Article  CAS  PubMed  Google Scholar 

  24. Lau MW, Gunawan C, Balan V, Dale BE (2010) Comparing the fermentation performance of Escherichia coli K011, Saccharomyces cerevisae 424A (LNH-ST) and Zymomonasmobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan IS, Lee KT (2014) Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy 78:53–62

    Article  CAS  Google Scholar 

  26. Mkhize T, Mthembu LD, Gupta R, Kaur A, Kuhad RC, Reddy P, Deenadayalu N (2016) Enzymatic saccharification of aci/alkali pre-treated, mill-run and depithed sugarcane bagasse. Bioresources 11(3):6267–6285

    Article  CAS  Google Scholar 

  27. Mussatto SI, Fernandes M, Roberto IC (2007) Lignin recovery from brewer’s spent grain black liquor. Carbohydr Polym 70:218–223

    Article  CAS  Google Scholar 

  28. Chakraborty S, Gupta R, Jain KK, Kuhad RC (2016) Cost-effective production of cellulose hydrolysing enzymes from Trichodermasp RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess Biosyst Eng 39(11):1659–1670

    Article  CAS  PubMed  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  30. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  31. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2001) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16:637–641

    Article  CAS  Google Scholar 

  32. Jung YH, Kim IJ, Kim HK, Kim KH (2013) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Kim CH (2013) Bioethanol production using sequential acid−/alkali pretreated empty palm fruit bunch fiber. Renew Energy 54:150–155

    Article  CAS  Google Scholar 

  34. Lee JW, Kim JY, Jang HM, Lee MW, Park JM (2015) Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization. Bioresour Technol 182:296–301

    Article  CAS  PubMed  Google Scholar 

  35. Ibrahim MM, El-Zawawy WK, Abdel-Fattah YR, Soliman NA, Agblevor FA (2011) Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr Polym 83:720–726

    Article  CAS  Google Scholar 

  36. Santos F and Curvelo AAS (2001) Recovery of lignins from kraft liquors. In: Proceedings of the 6th Brazilian symposium on the chemistry of lignins and other wood components, pp 310–314

  37. Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9(2):85–93

    Article  CAS  PubMed  Google Scholar 

  38. Jahan MS, Chowdhury DAN, Islam MK, Moeiz SMI (2007) Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour Technol 98(2):465–469

    Article  CAS  PubMed  Google Scholar 

  39. Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  40. Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161:274–287

    Article  CAS  PubMed  Google Scholar 

  41. Kim S, Park JM, Seo JW, Kim CH (2012) Sequential acid-/alkali pretreatment of empty palm fruit bunch fiber. Bioresour Technol 109:229–233

    Article  CAS  PubMed  Google Scholar 

  42. Gupta R, Mehta G, Kuhad RC (2012) Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass Bioenergy 47:334–341

    Article  CAS  Google Scholar 

  43. Alrikkson B, Cavka A, Jonsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102:1254–1263

    Article  CAS  Google Scholar 

  44. DaSilva ASA, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101(19):7402–7409

    Article  CAS  Google Scholar 

  45. Raghavi S, Sindhu R, Binod P, Gnansounou E, Pandey A (2016) Development of novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresour Technol 199:202–210

    Article  CAS  PubMed  Google Scholar 

  46. DevendraLP and Pandey A (2016) Hydrotropic pretreatment on rice straw for bioethanol production. Renew Energy 98:2–8

    Article  CAS  Google Scholar 

  47. Koradiya M, Duggirala S, Tipre D, Dave S (2016) Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale up. Bioresour Technol 199:142–147

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Ministry of new and renewable energy (MNRE), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Kuhad, R.C. Valorization of Rice Straw for Ethanol Production and Lignin Recovery Using Combined Acid-Alkali Pre-treatment. Bioenerg. Res. 12, 570–582 (2019). https://doi.org/10.1007/s12155-019-09988-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-09988-3

Keywords

Navigation