Skip to main content
Log in

Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cistus ladanifer residues obtained after essential oil distillation were extracted with ethanol and water (CLRext) and subsequently hydrothermally treated (autohydrolysis) in order to selectively hydrolyze hemicelluloses. The extraction removed a significant amount of potentially valuable compounds (40% w/w, dry basis), foremost, phenolic compounds (0.363 and 0.250 g gallic acid equivalent/g extract, respectively, for water and ethanol). Autohydrolysis was studied under diverse severity factors (log Ro), in the temperature range of 150 to 230 °C. The hydrolyzates mainly contain oligosaccharides, reaching the highest concentration (23.5 g/L) for log Ro of 3.07 (190 °C), corresponding to a yield of 15 g oligosaccharides/100 g dry feedstock. The processed solids are enriched in glucan and lignin. The maximum glucan content (35%) was attained at log Ro of 3.51 (205 °C). Py-GC/MS confirmed the reduction of pentose-derived carbohydrates in the solid after hydrothermal treatment and an increase of syringil units in the lignin compared to the untreated biomass. These results show the potential use of this C. ladanifer residue for the production of phenolic extracts, and hemicellulosic oligosaccharides, together with the production of a cellulose- and lignin-rich solid stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACO:

Acetyl groups linked to oligosaccharides

AOS:

Arabinooligosaccharides

C:

Carbohydrate-derived products

CLRs:

Cistus ladanifer residues

CLRext:

Extracted Cistus ladanifer residues

CZE:

Capillary zone electrophoresis

G:

Guaiacyl

GAE:

Gallic acid equivalent

Glc:

Glucose

GlcOS:

Glucooligosaccharides

H:

p-hydroxyphenyl

HAA:

Hydroxyacetaldehyde

HMF:

5-Hydroxymethylfurfural

HPLC:

High-performance liquid chromatography

LHW:

Liquid hot water

n.d.:

Not detected

NDL:

Lignin origin not identified

Py-GC/MS:

Pyrolysis-gas chromatography-mass spectrometry

S:

Syringyl

XOS:

Xylooligosaccharides

Xyl:

Xylose

References

  1. Mariotti JP, Tomi F, Casanova J, Costa J, Bernardini AF (1997) Composition of the essential oil of C. ladaniferus L. cultivated in Corsica (France). Flavour Frag J 12:147–151

    Article  CAS  Google Scholar 

  2. Weyerstahl P, Marschall H, Weirauch M, Thefeld K, Surburg H (1998) Constituents of commercial labdanum oil. Flav Fragr J 13:295–318

    Article  CAS  Google Scholar 

  3. Pérez P, Esteban LS, Ciria MP (2011) Distribución geográfica, caracterización ecológica y evaluación de Cistus laurifolius y Cistus ladanifer Estudios sobre el matorral como recurso energético. Agroenergética Biomassa Vida Rural 66–70

  4. Clamote F, Porto ACM, Araújo PV, Holyoak DT, Pereira AJ, Aguiar C, Lourenço J (2019) Cistus ladanifer L. subsp. ladanifer—Mapa de distribuição. Flora-On: Flora de Portugal Interactiva, Sociedade Portuguesa de Botânica. http://www.floraon.pt. Accessed 12 Feb 2019

  5. Calvo L, Tárrega R, Luis ED, Valbuena L, Marcos E (2005) Recovery after experimental cutting and burning in three shrub communities with different dominant species. Plant Ecol 180:175–185

  6. Delgado JA, Serrano JM, López F, Acosta FJ (2008) Seed size and seed germination in the Mediterranean fire-prone shrub Cistus ladanifer. Plant Ecol 197:269–276

    Article  Google Scholar 

  7. Tárrega R, Luis-Calabuig E, Valbuena L (2001) Eleven years of recovery dynamic after experimental burning and cutting in two Cistus communities. Acta Oecol 22:277–283

  8. Andrade D, Gil C, Breitenfeld L, Domingues F, Duarte AP (2009) Bioactive extracts from Cistus ladanifer and Arbutus unedo L. Ind Crop Prod 30:165–167

    Article  CAS  Google Scholar 

  9. Cistus labdanum in Andalusia. Cistus labdanum in perfumery. https://www.biolandes.com/en-cistus-labdanum.php?voyage=o&lg=en. Accessed February 20, 2019

  10. Xylan market - global industry analysis, size, share, growth, trends and forecast 2018 – 2026 https://www.transparencymarketresearch.com/xylan-market.html Transparency Market Research. Accessed February 22, 2019

  11. Vanillin market https://www.grandviewresearch.com/press-release/global-vanillin-market. Accessed February 22, 2019

  12. Ahuja K and Deb S. (2018) Lignin market size by product (lignosulphonates, kraft lignin, low purity lignin), by application…Competitive Market Share & Forecast, 2017–2024 https://www.gminsights.com/industry-analysis/lignin-market. Accessed February 22, 2019

  13. Morgado JM, Tapias R, Alesso P (2005) Producción de goma bruta de jara (Cistus ladanifer L.) en el suroeste de la península ibérica. In: Actas, vol 4. Congreso Forestal Español. Zaragoza, España, p 257

    Google Scholar 

  14. Bouamama H, Noel T, Villard J, Benharref A, Jana M (2006) Antimicrobial activities of the leaf extracts of two Moroccan Cistus L species. J Ethnopharmacol 104:104–107

    Article  CAS  PubMed  Google Scholar 

  15. Chaves N, Escudero JC, Gutierrez-Merino C (1997) Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J Chem Ecol 23(3):579–603

    Article  CAS  Google Scholar 

  16. Narbona E, Guzmán B, Arroyo J, Vargas P (2010) Why are fruit traits of Cistus ladanifer (Cistaceae) so variable: a multi-level study across the western Mediterranean region. Perspect Plant Ecol Evol Syst 12:305–315

  17. Sosa T, Alías JC, Escudero JC, Chaves N (2005) Interpopulational variation in the flavonoid composition of Cistus ladanifer L. exudate. Biochem Syst Ecol 33:353–364

    Article  CAS  Google Scholar 

  18. Verdeguer M, Blázquez MA, Boira H (2012) Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat Prod Res 26(17):1602–1609

    Article  CAS  PubMed  Google Scholar 

  19. Fernandes MC, Ferro MD, Paulino AFC, Chaves HT, Evtuguin DV, Xavier AMRB (2018) Comparative study on hydrolysis and bioethanol production from cardoon and rockrose pretreated by dilute acid hydrolysis. Ind Crop Prod 111:633–641

    Article  CAS  Google Scholar 

  20. Ferro D, Fernandes MC, Paulino AFC, Prozil SO, Gravitis J, Evtuguin DV, Xavier AMRB (2015) Bioethanol production from Cistus ladanifer after steam explosion pretreatment. Biochem Eng J 104:98–105

    Article  CAS  Google Scholar 

  21. Gil N, Domingues FC, Amaral ME, Duarte AP (2012) Optimization of diluted acid pretreatment of Cytisus striatus and Cistus ladanifer for bioethanol production. J Biobased Mater Bio 6:1–7

    Article  CAS  Google Scholar 

  22. Alves-Ferreira J, Duarte LC, Fernandes MC, Pereira H, Carvalheiro F (2017) Hydrothermal treatments of Cistus ladanifer industrial residues obtained from essential oil distilleries. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-017-0127-3

  23. Raimundo JR, Frazão DF, Domingues JL, Quintela-Sabaris C, Dentinho TP, Anjos O, Alves M, Delgado F (2018) Neglected Mediterranean plant species are valuable resources: the example of Cistus ladanifer. Planta:1–14

  24. Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw auto-hydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93

    Article  CAS  PubMed  Google Scholar 

  25. Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  26. Santos TM, Alonso MV, Oliet M, Domínguez JC, Rigual V, Rodriguez F (2018) Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydr Polym 194:285–293

    Article  CAS  PubMed  Google Scholar 

  27. Moura P, Barata R, Carvalheiro F, Gírio FM, Loureiro-Dias MC, Esteves MP (2007) In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT Food Sci Technol 40:963–972

  28. Moniz P, Pereira H, Quilhó T, Carvalheiro F (2013) Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Ind Crop Prod 50:145–153

    Article  CAS  Google Scholar 

  29. Moniz P, Pereira H, Duarte LC, Carvalheiro F (2014) Hydrothermal production and gel filtration purification of xylo-oligosaccharides from rice straw. Ind Crop Prod 62:460–465

    Article  CAS  Google Scholar 

  30. Cara C, Ruiz E, Carvalheiro F, Moura P, Ballesteros I, Castro E, Gírio F (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod 40:225–231

    Article  CAS  Google Scholar 

  31. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. NREL/TP-510-42619. National Renewable Energy Laboratory, Battelle, USA

  32. Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc Lond A 321:523–536

    Article  CAS  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton J (2005) Determination of ash in biomass. NREL/TP-510-42622. National Renewable Energy Laboratory, Battelle, USA

  34. TAPPI UM-250 (1991) Acid-soluble lignin in wood and pulp. In: TAPPI. Useful method. TAPPI Press, Atlanta, GA, USA

  35. AOAC (1975) Official methods of analysis, 11th edn. AOAC, Washington, DC

    Google Scholar 

  36. Carvalheiro F, Esteves MP, Parajó JC, Pereira H, Gírio FM (2004) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91(1):93–100

  37. Roseiro LB, Tavares CS, Roseiro JC, Rauter AP (2013) Antioxidants from aqueous decoction of carob pods biomass (Ceratonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crop Prod 44:119–126

  38. Faix O, Fortman I, Bremer J, Meier D (1991) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of polysaccharide derived products. Holz Roh Werkst 49:213–219

    Article  CAS  Google Scholar 

  39. Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

  40. Baptista I, Miranda I, Quilhó T, Gominho J, Pereira H (2013) Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crop Prod 50:166–175

    Article  CAS  Google Scholar 

  41. Miranda I, Gominho J, Mirra I, Pereira H (2013) Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind Crop Prod 41:299–305

    Article  CAS  Google Scholar 

  42. Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crop Prod 36:395–400

    Article  CAS  Google Scholar 

  43. Sánchez-Vioque R, Polissiou M, Astraka K, De los Mozos-Pascual M, Tarantilis P, Herraiz-Peñalver D, Santana-Méridas O (2013) Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind Crop Prod 49:150–159

    Article  CAS  Google Scholar 

  44. Tomás-Menor L, Morales-Soto A, Barrajón-Catalán E, Roldán-Segura C, Segura-Carretero A, Micol V (2013) Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food Chem Toxicol 55:313–322

  45. Barrajón-Catalán E, Fernández-Arroyo S, Saura D, Guillén E, Fernández-Gutiérrez A, Segura-Carreter A, Micol V (2010) Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol 48:2273–2282

  46. Jesus MS, Romaní A, Genisheva Z, Teixeira JA, Domingues L (2017) Integral valorization of vine pruning residue by sequential autohydrolysis stages. J Clean Prod 168:74–86

  47. Romero I, Moya M, Sánchez S, Ruiz E, Castro E, Bravo V (2007) Ethanolic fermentation of phosphoric acid hydrolysates from olive tree pruning. Ind Crop Prod 25:160–168

    Article  CAS  Google Scholar 

  48. Surek E, Buyukkileci AO (2017) Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 174:565–571

  49. Nabarlatz D, Ebringerová A, Montané D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr Polym 69:20–28

    Article  CAS  Google Scholar 

  50. Heitz M, Capek-Ménard E, Koeberle PG, Gagne J, Chornet E, Overend RP, Taylor JD, Yu E (1991) Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE II technology. Bioresour Technol 35:23–32

    Article  CAS  Google Scholar 

  51. Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57

    Article  CAS  PubMed  Google Scholar 

  52. Pontes R, Romaní A, Michelin M, Domingues L, Teixeira J, Nunes J (2018) Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds. Renew Energy 128:20–29

    Article  CAS  Google Scholar 

  53. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16

    Article  CAS  Google Scholar 

  54. Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic acid formation during hydrothermal, acidic and alkaline degradation of D-xylose. Monatsh Chem 123:547–556

  55. Herranz JM, Ferrandis P, Copete MA, Duro EM, Zalacaín A (2006) Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol 184:259–272

    Article  Google Scholar 

  56. Bensah EC, Kadar Z, Mensah MY (2015) Ethanol production from hydrothermally-treated biomass from West Africa. Bioresources 10:6522–6537

    Article  CAS  Google Scholar 

  57. Patwardhan PR, Satrio JA, Brown C, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrolysis 86:323–330

    Article  CAS  Google Scholar 

  58. Johnson RL, Liaw SS, Garcia-Perez M, Ha S, Lin SSY, McDonald AG, Chen S (2009) Pyrolysis gas chromatography mass spectrometry studies to evaluate high-temperature aqueous pretreatment as a way to modify the composition of bio-oil from fast pyrolysis of wheat straw. Energy Fuel 2312:6242–6252

    Article  CAS  Google Scholar 

  59. Mante OD, Amidon TE, Stipanovic A, Babu SP (2014) Integration of biomass pretreatment with fast pyrolysis: an evaluation of electron beam (EB) irradiation and hot-water extraction (HWE). J Anal Appl Pyrolysis 110:44–54

    Article  CAS  Google Scholar 

  60. Zhurinsh A, Dobele G, Jurkjane V, Meile K, Volperts A, Plavniece A (2017) Impact of hot water pretreatment temperature on the pyrolysis of birch wood. J Anal Appl Pyrolysis 124:515–522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Duarte Neiva, Patrícia Moniz, Cláudia Tavares, Céu Penedo e Belina Ribeiro for laboratorial help.

Funding

This work was financed by CAPES – Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil.

This work was conducted during the doctoral scholarship of Junia Alves-Ferreira (Process 9109/13-7) and financed by CAPES – Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil. Ana Lourenço acknowledges a post-doc scholarship funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/95385/2013). This work was supported by the QREN Project “Biomassa Endógena” (Portugal). Centro de Estudos Florestais and Instituto de Ciências Agrárias e Ambientais Mediterrânicas are research units funded by FCT (UID/AGR/00239/2019 and UID/AGR/00115/2019, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florbela Carvalheiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves-Ferreira, J., Duarte, L.C., Lourenço, A. et al. Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides. Bioenerg. Res. 12, 347–358 (2019). https://doi.org/10.1007/s12155-019-09975-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-09975-8

Keywords

Navigation