Skip to main content
Log in

Photocatalytic Degradation of β-O-4 Lignin Model Compound by In2S3 Nanoparticles Under Visible Light Irradiation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cleaving the abundant β-O-4 linkages in lignin is a key issue for producing value-added products by controlled lignin depolymerization. Herein, hydrothermally synthesized In2S3 nanoparticles were primarily used to photodegrade guaiacylglycerol-β-guaiacyl ether, a β-O-4 lignin model compound, under visible light irradiation. The as-synthesized In2S3 nanoparticles are found to be typical β-In2S3 nanocrystals of cubic phase and composed of large plate-like particles and small granular particles by using X-ray diffraction technique and field-emission scanning electron microscopy. The bandgap energy of the In2S3 nanoparticles is estimated to be 1.78 eV using an UV-visible diffuse reflectance spectroscopy. The photodegradation and structure variation of lignin model compound were evaluated by the variation of its UV-vis absorption spectrum, Fourier transform infrared spectrum, and X-ray photoelectron spectroscopy, while its degradation products were identified by using the gas chromatography-mass spectrometry. The results show that the as-synthesized In2S3 nanoparticles can photocatalytically break the β-O-4 linkage and oxidize the hydroxyl/methoxyl groups of lignin model compound under visible light irradiation although the lignin model compound is photo-resistant even under UV irradiation. The photodegradation products of lignin model compound consist of various aromatic monomers including value-added acetovanillone, vanillin, and coniferyl aldehyde. A possible pathway is proposed for photodegrading lignin model compound in the presence of the as-synthesized In2S3 nanoparticles under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim KH, Simmons BA, Singh S (2017) Catalytic transfer hydrogenolysis of ionic liquid processed biorefinery lignin to phenolic compounds. Green Chem 19(1):215–224. https://doi.org/10.1039/C6GC02473D

    Article  CAS  Google Scholar 

  2. Nair V, Dhara P, Vinu R (2016) Production of phenolics via photocatalysis of ball milled lignin–TiO2 mixtures in aqueous suspension. RSC Adv 6(22):18204–18216. https://doi.org/10.1039/C5RA25954A

    Article  CAS  Google Scholar 

  3. Chen Y, Wang F, Jia Y, Yang N, Zhang X (2017) One-step ethanolysis of lignin into small-molecular aromatic hydrocarbons over nano-SiC catalyst. Bioresour Technol 226:145–149. https://doi.org/10.1016/j.biortech.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Wan C (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sust Energ Rev 73:610–621. https://doi.org/10.1016/j.rser.2017.01.166

    Article  CAS  Google Scholar 

  5. Shen XJ, Wen JL, Huang PL, Zheng K, Wang SF, Liu QY, Charlton A, Sun RC (2017) Efficient and product-controlled depolymerization of lignin oriented by Raney Ni cooperated with Cs x H3 −x PW12O40. Bioenerg Res 10(4):1155–1162. https://doi.org/10.1007/s12155-017-9855-2

    Article  CAS  Google Scholar 

  6. Biannic B, Bozell JJ (2013) Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org Lett 15(11):2730–2733. https://doi.org/10.1021/ol401065r

    Article  CAS  PubMed  Google Scholar 

  7. Azarpira A, Ralph J, Lu F (2014) Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemical. Bioenerg Res 7(1):78–86. https://doi.org/10.1007/s12155-013-9348-x

    Article  CAS  Google Scholar 

  8. Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading—technology review. 6(4): 1183–1204

  9. Melligan F, Hayes MHB, Kwapinski W, Leahy JJ (2012) Hydro-pyrolysis of biomass and online catalytic vapor upgrading with Ni-ZSM-5 and Ni-MCM-41. Energy Fuel 26(10):6080–6090. https://doi.org/10.1021/ef301244h

    Article  CAS  Google Scholar 

  10. Brebu M, Tamminen T, Spiridon I (2013) Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J Anal Appl Pyrolysis 104(11):531–539. https://doi.org/10.1016/j.jaap.2013.05.016

    Article  CAS  Google Scholar 

  11. Gillet S, Petitjean L, Aguedo M, Lam CH, Blecker C, Anastas PT (2017) Impact of lignin structure on oil production via hydroprocessing with a copper-doped porous metal oxide catalyst. Bioresour Technol 223:216–226

    Article  Google Scholar 

  12. Parsell TH, Owen BC, Klein I, Jarrell TM, Marcuum CL, Haupert LJ, Amundson LM, Kenttamaa HI, Ribeiro F, Miller JT, Abu-Omar MM (2013) Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem Sci 4(2):806–813. https://doi.org/10.1039/C2SC21657D

    Article  CAS  Google Scholar 

  13. Nguyen JD, Matsuura BS, Stephenson CRJ (2014) A photochemical strategy for lignin degradation at room temperature. J Am Chem Soc 136(4):1218–1221. https://doi.org/10.1021/ja4113462

    Article  CAS  PubMed  Google Scholar 

  14. Li SH, Liu S, Colmenares JC, YJ X (2016) A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem 18(3):594–607. https://doi.org/10.1039/C5GC02109J

    Article  CAS  Google Scholar 

  15. Gong J, Imbault A, Farnood R (2017) The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2 under solar light illumination. Appl Catal B 204:296–303. https://doi.org/10.1016/j.apcatb.2016.11.045

    Article  CAS  Google Scholar 

  16. Kobayakawa K, Sato Y, Nakamura S, Fujishima A (1989) Photodecomposition of kraft lignin catalyzed by titanium dioxide. Bull Chem Soc Jpn 62(11):3433–3446. https://doi.org/10.1246/bcsj.62.3433

    Article  CAS  Google Scholar 

  17. Cornish BJPA, Lawton LA, Robertson PKJ (2000) Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl Catal B 25(1):59–67. https://doi.org/10.1016/S0926-3373(99)00121-6

    Article  CAS  Google Scholar 

  18. Ma YS, Chang CN, Chiang YP, Sung HF, Chao AC (2008) Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. Chemosphere 71(5):998–1004. https://doi.org/10.1016/j.chemosphere.2007.10.061

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Lei Z, Liu C, Zhang Z, Lu B (2015) Photocatalytic degradation of lignin on synthesized Ag–AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation. Bioresour Technol 175:494–501. https://doi.org/10.1016/j.biortech.2014.10.143

    Article  CAS  PubMed  Google Scholar 

  20. Kadam SR, Mate VR, Panmand RP, Nikam LK, Kulkarni MV, Sonawane RS, Kale BB (2014) A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv 4(105):60626–60635. https://doi.org/10.1039/C4RA10760H

    Article  CAS  Google Scholar 

  21. Du Z, Li W, Xu Z, Wu H, Jameel H, Chang HM, Ma LL (2016) Characterization of C60/Bi2TiO4F2 as a potential visible spectrum photocatalyst for the depolymerization of lignin. J Wood Chem Technol 36(5):365–376. https://doi.org/10.1080/02773813.2016.1173063

    Article  CAS  Google Scholar 

  22. Luo N, Wang M, Li H, Zhang J, Liu H, Wang F (2016) Photocatalytic oxidation-hydrogenolysis of lignin β-O-4 models via dual light wavelength switching strategy. ACS Catal 6(11):7716–7721. https://doi.org/10.1021/acscatal.6b02212

    Article  CAS  Google Scholar 

  23. Wang X, Liu W, Wang X, Yu D, Liu H (2015) Preparation of In2S3@TiO2 nanobelt heterostructures with high UV-visible light photocatalytic activities. Sci Adv Mater 7(3):479–488. https://doi.org/10.1166/sam.2015.1993

    Article  CAS  Google Scholar 

  24. Gao W, Liu W, Leng Y, Wang X, Wang X, Hu B, Yu D, Sang Y, Liu H (2015) In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity. Appl Catal B 176-177:83–90. https://doi.org/10.1016/j.apcatb.2015.03.048

    Article  CAS  Google Scholar 

  25. Chen J, Liu W, Gao W (2016) Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology. Appl Sur Sci 368:288–297. https://doi.org/10.1016/j.apsusc.2016.02.008

    Article  CAS  Google Scholar 

  26. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173. https://doi.org/10.1021/nn300934k

    Article  CAS  PubMed  Google Scholar 

  27. Song L, Zhao X, Cao L, Moon J-W, Gu B, Wang W (2015) Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation. Nano 7:16695–16703

    CAS  Google Scholar 

  28. Yuan TQ, Sun SN, Xu F, Sun RC (2011) Structural characterization of lignin from triploid of Populus tomentosa carr. J Agric Food Chem 59(12):6605–6615. https://doi.org/10.1021/jf2003865

    Article  CAS  PubMed  Google Scholar 

  29. Ehara K, ·Takada D, ·Saka S (2005) GC-MS and IR spectroscopic analyses of the lignin-derived products from softwood and hardwood treated in supercritical water. J Wood Sci 51(3):256–261, DOI: https://doi.org/10.1007/s10086-004-0653-z

    Article  CAS  Google Scholar 

  30. Zeng DW, Yung KC, Xie CS (2002) XPS investigation of the chemical characteristics of Kapton films ablated by a pulsed TEA CO2 laser. Surf Coat Technol 153(2–3):210–216. https://doi.org/10.1016/S0257-8972(01)01696-6

    Article  CAS  Google Scholar 

  31. Nie R, Miao M, Du W, Shi J, Liu Y, Hou Z (2016) Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst. Appl Catal B 180:607–613. https://doi.org/10.1016/j.apcatb.2015.07.015

    Article  CAS  Google Scholar 

  32. Lekelefac CA, Busse N, Herrenbauer M, Czermak P (2015) Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy 2015:1–18. https://doi.org/10.1155/2015/137634

    Article  CAS  Google Scholar 

  33. Neumann MG, Machado AEH (1989) The role of oxygen in the photodegradation of lignin in solution. J Photochem Photobiol B 3(4):473–481. https://doi.org/10.1016/1011-1344(89)80073-9

    Article  CAS  Google Scholar 

  34. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81(8):2280–2284. https://doi.org/10.1073/pnas.81.8.2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Antunes CSA, Bietti M, Salamone M, Scione N (2004) Early stages in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic lignin model compounds. J Photochem Photobiol A 163(3):453–462. https://doi.org/10.1016/j.jphotochem.2004.01.018

    Article  CAS  Google Scholar 

Download references

Funding

The project was funded by National Natural Science Foundation of China (No. 31270625 and 21506105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxia Liu or Yimin Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, W., Song, Z. et al. Photocatalytic Degradation of β-O-4 Lignin Model Compound by In2S3 Nanoparticles Under Visible Light Irradiation. Bioenerg. Res. 11, 166–173 (2018). https://doi.org/10.1007/s12155-017-9886-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9886-8

Keywords

Navigation