Skip to main content
Log in

Incidence of renal scarring on technetium-99 m dimercaptosuccinic acid renal scintigraphy after acute pyelonephritis, acute focal bacterial nephritis, and renal abscess

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the association between the incidence of renal scarring on technetium-99 m dimercaptosuccinic acid (DMSA) renal scintigraphy and the severity of renal parenchymal infections, such as acute pyelonephritis (APN), acute focal bacterial nephritis (AFBN), and renal abscess, based on computed tomography (CT) diagnosis.

Methods

Sixty-one children with renal parenchymal infections were included and classified into two groups: those with (renal scarring group) and without renal scarring (non-renal scarring group) on chronic-phase DMSA renal scintigraphy. The severity of renal parenchymal infection was classified into three grades using CT: APN, AFBN, and renal abscess as grades 1, 2, and 3, respectively. The severity of renal parenchymal infection, vesicoureteral reflux (VUR) grade, and intrarenal reflux occurrence during voiding cystourethrography (VCUG) were evaluated between the renal and non-renal scarring groups. Fisher’s exact test and Mann–Whitney U test were used for statistical analysis.

Results

Renal scars were detected in 28 (45.9%) of the 61 patients. We found that 2/9 (22.2%), 18/41 (43.9%), and 8/11 (72.7%) patients with APN (grade 1), AFBN (grade 2), and renal abscess (grade 3) had renal scarring, respectively. There was a significant difference in the grade of severity of renal parenchymal infection between the renal (median = 2 [interquartile range, 2–3]) and non-renal (median = 2 [interquartile range, 2–2]) scarring groups (p = 0.023). There was a significant difference in the grade of VUR between the renal (median = 3 [interquartile range, 0–4]) and non-renal (median = 0 [interquartile range, 0–2]) scarring groups (p = 0.004). No significant difference in intrarenal reflux occurrence was observed between the renal (present/absent: 3/25) and non-renal (present/absent: 0/29) scarring groups (p = 0.112).

Conclusion

Our results showed that pediatric patients with renal scarring on chronic-phase DMSA renal scintigraphy tended to have a more severe renal infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Newman TB. The new American academy of Pediatrics urinary tract infection guideline. Pediatrics. 2011;128:572–5.

    Article  PubMed  Google Scholar 

  2. Wan J, Skoog SJ, Hulbert WC, et al. Section on urology response to new guidelines for the diagnosis and management of UTI. Pediatrics. 2012;129:e1051–3.

    Article  PubMed  Google Scholar 

  3. Baumer JH, Jones RW. Urinary tract infection in children, national institute for health and clinical excellence. Arch Dis Child Educ Pract Ed. 2007;92:189–92.

    Article  CAS  PubMed  Google Scholar 

  4. Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128:595–610.

    Article  PubMed  Google Scholar 

  5. Yang SS, Tsai JD, Kanematsu A, Han CH. Asian guidelines for urinary tract infection in children. J Infect Chemother. 2021;27:1543–54.

    Article  CAS  PubMed  Google Scholar 

  6. Hellerstein S. The long-term consequences of urinary tract infections: a historic and contemporary perspective. Pediatr Ann. 1999;28:695–9.

    Article  CAS  PubMed  Google Scholar 

  7. Roupakias S, Sinopidis X, Karatza A, Varvarigou A. Predictive risk factors in childhood urinary tract infection, vesicoureteral reflux, and renal scarring management. Clin Pediatr (Phila). 2014;53:1119–33.

    Article  PubMed  Google Scholar 

  8. Jacobson SH, Hansson S, Jakobsson B. Vesico-ureteric reflux: occurrence and long-term risks. Acta Paediatr Suppl. 1999;88:22–30.

    Article  CAS  PubMed  Google Scholar 

  9. Jakobsson B, Jacobson SH, Hjalmås K. Vesico-ureteric reflux and other risk factors for renal damage: identification of high- and low-risk children. Acta Paediatr Suppl. 1999;88:31–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zaki, M., M. Badawi, G. Al Mutari, D. Ramadan, and M. Adul Rahman, (2005) Acute pyelonephritis and renal scarring in Kuwaiti children: a follow-up study using 99mTc DMSA renal scintigraphy. Pediatr Nephrol 20 1116–9.

  11. Bar-Sever Z, Shammas A, Gheisari F, Vali R. Pediatric Nephro-urology: overview and updates in diuretic renal scans and renal cortical scintigraphy. Semin Nucl Med. 2022;52:419–31.

    Article  PubMed  Google Scholar 

  12. Shaikh N, Shope TR, Hoberman A, et al. Corticosteroids to prevent kidney scarring in children with a febrile urinary tract infection: a randomized trial. Pediatr Nephrol. 2020;35:2113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Comploj E, Cassar W, Farina A, et al. Conservative management of paediatric renal abscess. J Pediatr Urol. 2013;9:1214–7.

    Article  PubMed  Google Scholar 

  14. Seidel T, Kuwertz-Broking E, Kaczmarek S, et al. Acute focal bacterial nephritis in 25 children. Pediatr Nephrol. 2007;22:1897–901.

    Article  PubMed  Google Scholar 

  15. Cheng CH, Tsau YK, Lin TY. Effective duration of antimicrobial therapy for the treatment of acute lobar nephronia. Pediatrics. 2006;117:e84–9.

    Article  PubMed  Google Scholar 

  16. Linder BJ, Granberg CF. Pediatric renal abscesses: a contemporary series. J Pediatr Urol. 2016;12:99.e1-5.

    Article  PubMed  Google Scholar 

  17. Soulen MC, Fishman EK, Goldman SM, Gatewood OM. Bacterial renal infection: role of CT. Radiology. 1989;171:703–7.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng CH, Tsau YK, Lin TY. Is acute lobar nephronia the midpoint in the spectrum of upper urinary tract infections between acute pyelonephritis and renal abscess? J Pediatr. 2010;156:82–6.

    Article  PubMed  Google Scholar 

  19. Bitsori M, Raissaki M, Maraki S, Galanakis E. Acute focal bacterial nephritis, pyonephrosis and renal abscess in children. Pediatr Nephrol. 2015;30:1987–93.

    Article  PubMed  Google Scholar 

  20. He, Y., W. Zhang, N. Sun, et al. (2019) Experience of pediatric urogenital tract inserted objects: 10-year single-center study. J Pediatr Urol 554.e1-.e8

  21. Rosenfield AT, Glickman MG, Taylor KJ, Crade M, Hodson J. Acute focal bacterial nephritis (acute lobar nephronia). Radiology. 1979;132:553–61.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng CH, Tsau YK, Hsu SY, Lee TL. Effective ultrasonographic predictor for the diagnosis of acute lobar nephronia. Pediatr Infect Dis J. 2004;23:11–4.

    Article  PubMed  Google Scholar 

  23. Hosokawa, T., Y. Tanami, Y. Sato, et al., (2022) Role of ultrasound in the treatment of pediatric infectious diseases: case series and narrative review. World J Pediatr 1–15

  24. Stunell H, Buckley O, Feeney J, et al. Imaging of acute pyelonephritis in the adult. Eur Radiol. 2007;17:1820–8.

    Article  CAS  PubMed  Google Scholar 

  25. Craig, W.D., B.J. Wagner, and M.D. Travis, (2008) Pyelonephritis: radiologic-pathologic review. Radiographics. 28 255–77, quiz 327–8

  26. Mizutani M, Hasegawa S, Matsushige T, et al. Distinctive inflammatory profile between acute focal bacterial nephritis and acute pyelonephritis in children. Cytokine. 2017;99:24–9.

    Article  CAS  PubMed  Google Scholar 

  27. Fontanilla T, Minaya J, Cortes C, et al. Acute complicated pyelonephritis: contrast-enhanced ultrasound. Abdom Imaging. 2012;37:639–46.

    Article  PubMed  Google Scholar 

  28. Ergun R, Sekerci CA, Tanidir Y, et al. Abnormal DMSA renal scan findings and associated factors in older children with vesicoureteral reflux. Int Urol Nephrol. 2021;53:1963–8.

    Article  CAS  PubMed  Google Scholar 

  29. Muniz G, Charron M, Lim R, et al. The role of renal contour change in the diagnosis of cortical scarring after urinary tract infection. Am J Nucl Med Mol Imaging. 2022;12:41–3.

    PubMed  PubMed Central  Google Scholar 

  30. Koizumi K, Masaki H, Matsuda H, et al. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures. Ann Nucl Med. 2014;28:498–503.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Uchiyama, M. , M. Kitamura, (2020) Japanese consensus guidelines for pediatric nuclear medicine. The Japanese society of nuclear medicine 1–87

  32. Fernbach, S.K., K.A. Feinstein, and M.B. Schmidt, (2000) Pediatric voiding cystourethrography: a pictorial guide. Radiographics 20 155–68 discussion 68–71

  33. Läckgren G, Cooper CS, Neveus T, Kirsch AJ. Management of vesicoureteral reflux: what have we learned over the last 20 years? Front Pediatr. 2021;9: 650326.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Möbius TE. International system of radiographic grading of vesicoureteric reflux. international reflux study in children. Pediatr Radiol. 1985;15:105–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rolleston GL, Maling TM, Hodson CJ. Intrarenal reflux and the scarred kidney. Arch Dis Child. 1974;49:531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hannerz L, Wikstad I, Johansson L, Broberger O, Aperia A. Distribution of renal scars and intrarenal reflux in children with a past history of urinary tract infection. Acta Radiol. 1987;28:443–6.

    Article  CAS  PubMed  Google Scholar 

  37. Morello W, La Scola C, Alberici I, Montini G. Acute pyelonephritis in children. Pediatr Nephrol. 2016;31:1253–65.

    Article  PubMed  Google Scholar 

  38. Rathore MH, Barton LL, Luisiri A. Acute lobar nephronia: a review. Pediatrics. 1991;87:728–34.

    Article  CAS  PubMed  Google Scholar 

  39. Klar A, Hurvitz H, Berkun Y, et al. Focal bacterial nephritis (lobar nephronia) in children. J Pediatr. 1996;128:850–3.

    Article  CAS  PubMed  Google Scholar 

  40. Majd M, Nussbaum Blask AR, Markle BM, et al. Acute pyelonephritis: comparison of diagnosis with 99mTc-DMSA, SPECT, spiral CT, MR imaging, and power doppler US in an experimental pig model. Radiology. 2001;218:101–8.

    Article  CAS  PubMed  Google Scholar 

  41. Kajiwara, K., S. Yamano, K. Aoki, et al., (2021) CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance 4

  42. Liu T, Dai C, Xu J, Li S, Chen JK. The expression level of class III phosphatidylinositol-3 kinase controls the degree of compensatory nephron hypertrophy. Am J Physiol Renal Physiol. 2020;318:F628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bridges CC, Barfuss DW, Joshee L, Zalups RK. Compensatory renal hypertrophy and the uptake of cysteine s-conjugates of Hg2+ in Isolated S2 proximal tubular segments. Toxicol Sci. 2016;154:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim JH, Kim MJ, Lim SH, Kim J, Lee MJ. Length and volume of morphologically normal kidneys in korean children: ultrasound measurement and estimation using body size. Korean J Radiol. 2013;14:677–82.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shimizu M, Katayama K, Kato E, et al. Evolution of acute focal bacterial nephritis into a renal abscess. Pediatr Nephrol. 2005;20:93–5.

    Article  PubMed  Google Scholar 

  46. Hosokawa T, Tanami Y, Sato Y, Oguma E. Comparison of imaging findings between acute focal bacterial nephritis (acute lobar nephronia) and acute pyelonephritis: a preliminary evaluation of the sufficiency of ultrasound for the diagnosis of acute focal bacterial nephritis. Emerg Radiol. 2020;27:405–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage [http://www.editage.com] for editing and reviewing this manuscript for the English language

Funding

No.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Hosokawa.

Ethics declarations

Conflict of interest

All authors declare that they have no financial or personal relationships that could lead to a conflict of interest.

Ethical approval

This research was conducted in accordance with the tenets of the Declaration of Helsinki.

Informed consent

This retrospective study was approved by the ethics committee of our institution, and the requirement for informed consent was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosokawa, T., Uchiyama, M., Tanami, Y. et al. Incidence of renal scarring on technetium-99 m dimercaptosuccinic acid renal scintigraphy after acute pyelonephritis, acute focal bacterial nephritis, and renal abscess. Ann Nucl Med 37, 176–188 (2023). https://doi.org/10.1007/s12149-022-01814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-022-01814-9

Keywords

Navigation